

Mata Kuliah: Perancangan Struktur Beton

Kode : TSI-303

: 3 sks

Desain Lentur Pondasi Telapak Pertemuan - 15

Sub Pokok Bahasan :

- Pengantar Rekayasa Pondasi
- Jenis dan Tipe-Tipe Pondasi
- Pemeriksaan Geser 1 dan 2 Arah Pondasi Telapak
- Desain Lentur Pondasi Telapak

Pengantar Rekayasa Pondasi

- Pondasi dalam istilah ilmu teknik sipil dapat didefinisikan sebagai bagian dari struktur bangunan yang berhubungan langsung dengan tanah dan berfungsi untuk menyalurkan beban-beban yang diterima dari struktur atas ke lapisan tanah.
- Proses disain struktur pondasi memerlukan analisis yang cukup lengkap, meliputi kondisi/jenis struktur atas, beban-beban kerja pada struktur, profil dari lapisan tanah tempat bangunan/struktur tersebut berada serta kemungkinan terjadinya penurunan (settlement).
- Pondasi dari suatu struktur pada umumnya terdari dari satu atau lebih elemen-elemen pondasi. Elemen pondasi adalah elemen transisi antara tanah atau batuan dengan struktur atas (*upper-structure*).

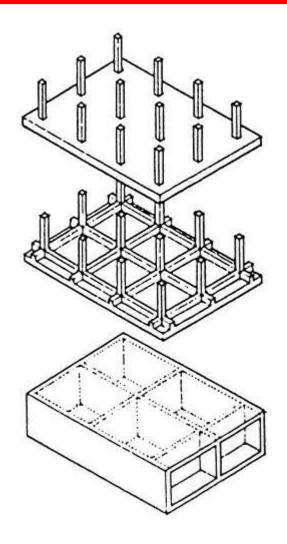
Pengantar Rekayasa Pondasi

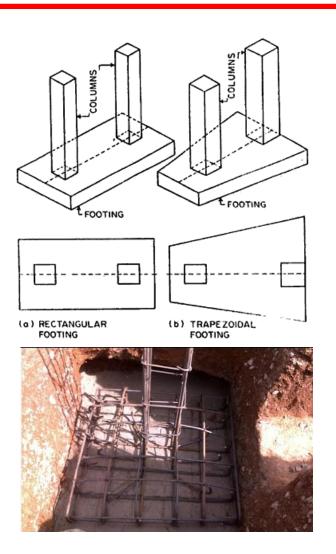
beberapa langkah yang perlu diambil pada suatu proses disain struktur pondasi:

- 1. Penentuan Beban Rencana
- 2. Penyelidikan Tanah
- 3. Pemilihan Jenis Pondasi
- 4. Penentuan Dimensi Pondasi
- 5. Tahap Konstruksi

Jenis dan Tipe-Tipe Pondasi

- Suatu elemen pondasi harus mampu mendistribusikan dan mentransmisikan beban – beban mati maupun beban – beban dinamik dari struktur atas ke lapisan tanah keras, sehingga tidak terjadi perbedaan penurunan (differential settlement) yang besar.
- Pemilihan jenis pondasi pada dasarnya tergantung pada letak kedalaman dari tanah keras.
- Pada umumnya jenis pondasi dapat dikelompokkan menjadi dua bagian besar, yaitu
 - pondasi dangkal (yang memiliki dasar pondasi pada kedalaman maksimal 2 m dari muka tanah asli)
 - pondasi dangkal (yang memiliki kedalaman tanah keras lebih dari 2 meter).




Jenis-Jenis Pondasi Dangkal

 Pondasi dangkal terdiri dari beberapa macam, antara lain pondasi telapak, pondasi lajur, pondasi gabungan serta pondasi raft/rakit (atau sering disebut juga mat foundation).

Tipe Fundasi	Fundasi Telapak	Fundasi Lajur	Fundasi Gabungan		Fundasi Rakit	
			Segi Empat	Trapesium		
Denah Fundas	i					
Potongo	n TT					

Jenis-Jenis Pondasi Dalam

- Pada beberapa kondisi yang dijumpai di lapangan, terkadang lapisan tanah keras sebagai dasar pondasi, terletak cukup dalam dari lapisan muka tanah.
- Atau dengan kata lain, lapisan tanah tersebut memiliki daya dukung yang kurang bagus.
- Sebagai akibatnya maka seorang ahli teknik tidak dapat menggunakan sistem pondasi dangkal, dan sebagai alternatifnya dapat dipilih sistem pondasi dalam berupa tiang pancang atau tiang bor.

Daya Dukung Tanah

- Untuk dapat merencanakan suatu struktur pondasi dengan baik, maka seorang ahli teknik hendaknya memahami dasar-dasar mekanika tanah.
- Dari besaran-besaran dalam mekanika tanah tersebut, maka dapat dihitung daya dukung tanah yang menjadi dasar bagi suatu elemen pondasi.
- Terzaghi (1943) merupakan orang pertama yang memberikan teori secara komprehensif mengenai daya dukung tanah ultimit untuk pondasi dangkal.
- Beberapa persamaan yang sering digunakan untuk menghitung daya dukung tanah pada pondasi dangkal adalah :
 - Untuk pondasi lajur/menerus

$$q_u = c'N_c + qN_a + \frac{1}{2} \gamma BN_a$$

Untuk pondasi persegi

$$q_u = 1.3c'N_c + qN_q + 0.4\gamma BN_g$$

Untuk pondasi bentuk lingkaran

$$q_u = 1.3c'N_c + qN_q + 0.3\gamma BN_g$$

TEGANGAN IJIN TANAH LUNAK & KERAS

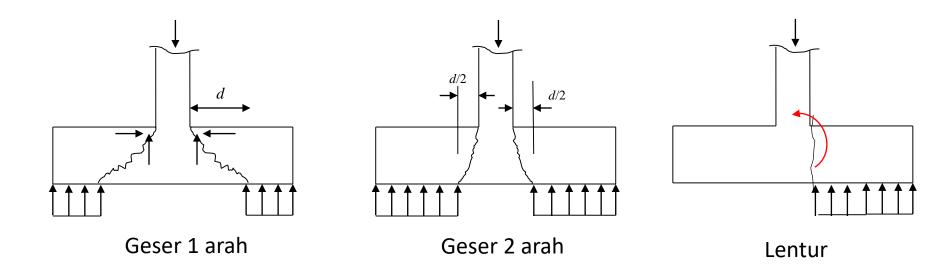
Tabel 1. Kriteria Daya Dukung Ijin (Suyono)

				Harga rata-rata			
Jenis-jenis tanah pondasi		Biasa (t/m²)	Bila ada gempa (t/m²)	Harga N	Kekuatan geser unconfined (kg/cm²)	Keterangan	
Tanah keras	Batu homogen yang keras Batu keras mudah retak Batu lunak	100 60 30	90 45		Lebih besar dari 100 Lebih besar dari 100 Lebih besar		
	batu lumpur	30	45		dari 10		
Lapisan kerikil	Tidak lepas	60 30	90 45	e= 1	-		
KCHKII	Lepas	30	43				
Tanah	Lepas	30	45	30-50	-	Bila harga N akibat	
pondasi berpasir	Sedang	20	30	15-30		Standard Penetration Test (SPT) lebih kecil dari 15, tanah pondas tidak sesuai untuk suatu konstruksi bangunan	
Tanah	Sangat keras	20	30	15-30	2,0-4,0		
pondasi	Keras	10	15	8-15	1,0-2,0		
kohesif	Sedang	5	7,5	4-8	0,5-1,0		

Tabel 2 Typical allowable bearing values (Craig, 1991)

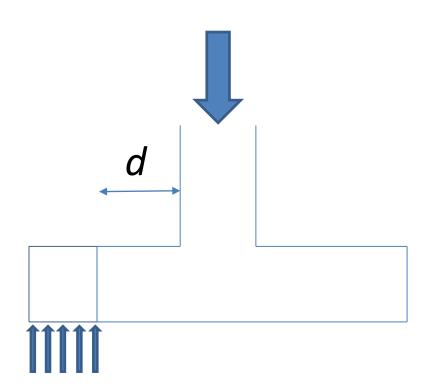
Rock or soil	Typical bearing value (kN/m ²)			
Massive igneous bedrock	10000			
Sandstone	2000 to 4000			
Shales and mudstone	600 to 2000			
Gravel, sand and gravel, compact	600			
Loose fine sand	100 to 300			
Medium dense sand	Less than 100			
Hard clay	300 to 600			
Medium clay	100 to 300			
Soft clay	Less than 75			

Tabel 3. Hubungan N, konsistensi tanah, kapasitas dukung ijin untuk tanah lempung (Terzaghi dan Peck, 194


TANAH LUNAK = 0.5 kg/cm² TANAH KERAS = 1 kg/cm²

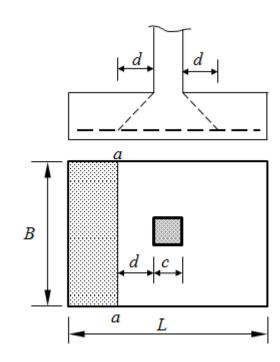
Konsistensi	N (dari SPT)	Kapasitas daya dukung pondasi bujur sangkar (KN/m²)	Kapasitas daya dukung pondasi memanjang (KN/m²)
Sangat Lunak	0-2	0-30	0-22
Lunak	2-4	30-60	22-45
Sedang	4-8	60-120	45-90
Kaku	8-15	120-240	90-180
Sangat Kaku	15-30	240-480	180-360
Keras	>30	>480	>360

Pondasi Telapak


 Pada proses desain pondasi telapak beton bertulang, umumnya harus dilakukan pemeriksaan terhadap keruntuhan geser dan lentur

Geser Satu Arah, V_{u1}

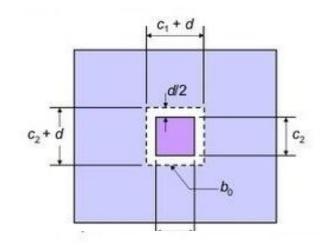
- Guna melakukan tinjauan terhadap kemungkinan kegagalan geser satu arah, maka dapat diambil potongan kritis penampang yang terletak sejarak d dari muka kolom.
- Pemeriksaan terhadap geser pada potongan a-a dapat dilakukan seperti halnya pada analisis geser balok

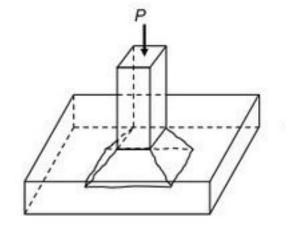

$$\phi V_c = \phi(0,17\lambda \sqrt{f'_c}bd)$$

Dengan $\phi = 0.75$ dan b adalah sama dengan lebar potongan a-a. Sedangkan gaya geser terfaktor yang bekerja pada potongan a-a adalah:

$$V_{u1} = q_u B \left(\frac{L}{2} - \frac{c}{2} - d \right)$$

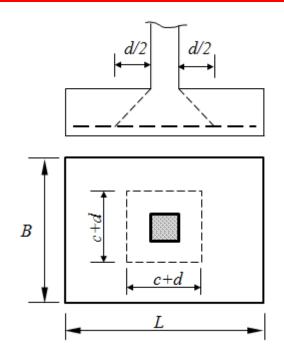
Apabila tidak digunakan tulangan geser, maka d dapat dihitung dengan mengasumsikan $V_u = \phi V_c$, sehingga:


$$d = \frac{V_{u1}}{\phi 0,17\lambda \sqrt{f_c'}b}$$



Geser Dua Arah, V_{u2}

- Keruntuhan geser dua arah dapat timbul sebagai akibat munculnya tegangan tarik diagonal yang disebabkan oleh beban kolom yang disalurkan ke pondasi.
- Lokasi penampang kritis untuk peninjauan geser dua arah diambil sejarak d/2 dari muka kolom.



• Kuat geser pondasi akibat geser dua arah, V_c , adalah diperoleh dari nilai terkecil antara :

$$V_{c1} = 0.17 \left(1 + \frac{2}{\beta_c} \right) \lambda \sqrt{f_c'} b_o d$$

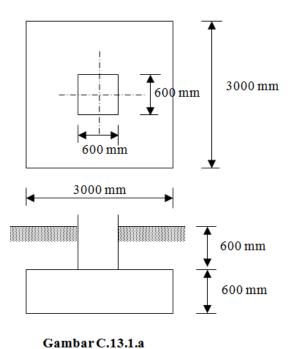
$$V_{c2} = 0.083 \left(\frac{\alpha_s d}{b_o} + 2 \right) \lambda \sqrt{f_c'} b_o d$$

$$V_{c3} = 0.33 \lambda \sqrt{f_c'} b_o d$$

dengan:

 $b_{
m o}$ adalah keliling dari penampang kritis pada pelat pondasi telapak (mm)

d tinggi efektif pelat pondasi (mm)


 $eta_{
m c}$ rasio sisi panjang terhadap sisi pendek dari beban terpusat atau daerah tumpuan

 $\alpha_{\rm s}$ = 40 untuk kolom dalam, 30 untuk kolom tepi dan 20 untuk kolom sudut

Contoh 1

- Lakukan pemeriksaan geser 1 arah dan 2 arah dari struktur pondasi dalam gambar disamping
- Pondasi memikul beban dari kolom akibat beban mati sebesar 1300 kN dan beban hidup 700 kN.
- Mutu beton $f/_c = 20$ MPa dan mutu baja tulangan $f_v = 400$ MPa.
- Daya dukung ijin tanah sebesar 250 kN/m². Pada pondasi terdapat timbunan tanah setebal 0,6 m dengan berat jenis tanah dianggap sebesar 16 kN/m³.

Data Teknis:

 P_{DL} = 1300 kN P_{LL} = 700 kN f_c^{\dagger} = 20 MPa f_y = 400 MPa σ_{all} = 250 kN/m² h = 0,60 m σ_{tanah} = 16 kN/m³

1. Menghitung Tegangan Yang Terjadi Pada Tanah

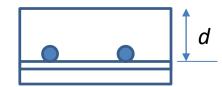
Pondasi harus memiliki luas penampang yang cukup sehingga beban-beban yang diterima oleh tanah menghasilkan tegangan yang masih lebih kecil daripada tegangan ijin tanah.

Beban kolom =
$$1300 + 700$$
 = 2000 kN

Berat pondasi
$$= 3(3)(0,6)(24)$$
 $= 129,6$ kN

Berat tanah =
$$(3^2 - 0.6^2)(0.6)(16)$$
 = 82.944 kN

Beban total pada tanah
$$= 2212,544 \text{ kN}$$


Tegangan pada tanah =
$$\frac{2.212,544}{3 \times 3} = 245,83 \text{ kN/}^2 < \sigma_{\text{all}}$$
 OK

Untuk memperhitungkan pengaruh geser satu arah dan dua arah (pons) terlebih dahulu dihitung besarnya tinggi efektif rerata dari pondasi

$$d_{\text{rerata}}$$
 = tebal pondasi – selimut – 1diameter tulangan
= $600 - 75 - 19 = 506 \text{ mm}$

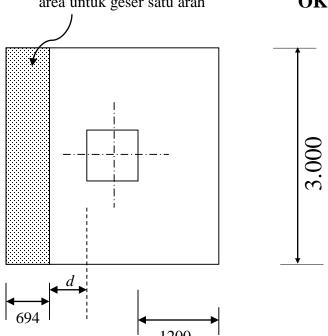
Tegangan tanah ultimit akibat beban terfaktor besarnya adalah

$$p_{\text{ult}} = \frac{1,2(1.300) + 1,6(700)}{3 \times 3} = 297,78 \text{ kN/m}^2$$

2. Menghitung Tegangan Ultimit Pada Tanah

Untuk memperhitungkan pengaruh geser satu arah dan dua arah (pons) terlebih dahulu dihitung besarnya tinggi efektif rerata dari pondasi

$$d_{\text{rerata}}$$
 = tebal pondasi – selimut – 1diameter tulangan
= $600 - 75 - 19 = 506 \text{ mm}$


Tegangan tanah ultimit akibat beban terfaktor besarnya adalah

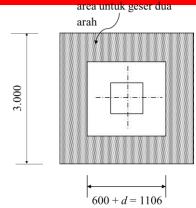
$$p_{\text{ult}} = \frac{1,2(1.300) + 1,6(700)}{3 \times 3} = 297,78 \text{ kN/m}^2$$

3. Pemeriksaan Geser 1 arah

Berdasarkan area beban untuk geser satu arah pada Gambar, maka besarnya geser satu arah terfaktor adalah

$$V_{\rm u1} = p_{\rm ult} \times \text{area efektif} = 297,78 \times 0,694 \times 3 = 619,98 \text{ kN}$$

 $\phi V_{\rm n} = \phi(0,17\lambda\sqrt{f_cbd}) = 0,75(0,17)(1,0)(\sqrt{20})(3000)(506) = 865.559,55 \text{ N}$
 $= 865,56 \text{ kN} > V_{\rm u}$ area untuk geser satu arah **OK**



4. Pemeriksaan Geser 2 arah

Besarnya gaya geser dua arah terfaktor adalah

$$V_{\rm u2} = p_{\rm ult} \times \text{area efektif} = 297,78 \times (3^2 - 1,106^2) = 2.315,76 \text{ kN}$$

Nilai kuat geser pons dua arah untuk beton ditentukan dari nilai terkecil antara :

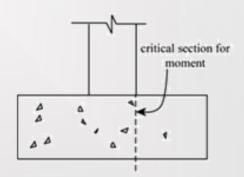
$$V_{c1} = 0.17 \left(1 + \frac{2}{\beta_c} \right) \lambda \sqrt{f_c'} b_o d = 0.17 \left(1 + \frac{2}{1} \right) (1.0) \sqrt{20} (1.106 \times 4) (506) = 5.105.647,28 \text{ N}$$

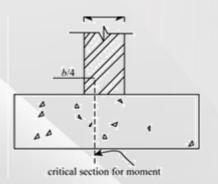
$$V_{c2} = 0.083 \left(\frac{\alpha_s d}{b_o} + 2 \right) \lambda \sqrt{f_c'} b_o d = 0.083 \left(\frac{40 \times 506}{4 \times 1.106} + 2 \right) (1,0) \sqrt{20} (4 \times 1.106) (506)$$
$$= 5.463.330.44 \text{ N}$$

$$V_{c3} = 0.33\lambda \sqrt{f_c'} b_o d = 0.33(1.0)\sqrt{20(4 \times 1.106)(506)} = 3.303.654,12 \text{ N}$$

maka:

$$\phi V_{\rm n} = 0.75 V_{\rm n} = 0.75 (3.303.654, 12) = 2.477.740,59 \text{ N} = 2.477,74 \text{ kN} > V_{\rm u2}$$





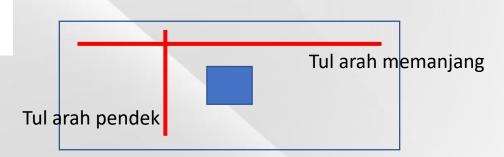
Momen yang muncul pada penampang pondasi telapak ditentukan terhadap suatu potongan bidang vertikal pada pondasi tersebut yang terletak pada :

- Muka kolom, pedestal atau dinding, untuk pondasi telapak yang memikul kolom, pedestal atau dinding beton
- Setengah dari jarak yang diukur dari bagian tengah ke tepi dinding, untuk pondasi telapak yang mendukung dinding pasangan
- Setengah dari jarak yang diukur dari muka kolom ke tepi pelat alas baja, untuk pondasi yang mendukung kolom dengan pelat dasar baja

- Jumlah tulangan tarik terpasang pada suatu pondasi telapak harus diperhatikan besarnya, dengan luas minimum tulangan tarik dalam arah bentang yang ditinjau harus memenuhi kebutuhan tulangan untuk susut dan suhu
- Nilai rasio tulangan minimum tersebut tidak boleh kurang dari 0,0014.
- Sedangkan jarak antar tulangan maksimum tidak boleh melebihi tiga kali tebal pondasi atau 450 mm.

Tabel 13.2 Rasio Tulangan Minimum Terhadap Luas Brutto Penampang Beton							
(a) Pelat dengan tulangan ulir bermutu 280 atau 350 MPa	0,002						
(b) Pelat dengan tulangan ulir bermutu 420 MPa atau jaring kawat las (wire-mesh)	0,0018						
(c) Pelat dengan tulangan ulir bermutu lebih dari 420 MPa	$0,0018 \times 420/f_y$						

• Tulangan lentur pada pondasi telapak satu arah dan pondasi telapak bujur sangkar harus disebarkan secara merata ke seluruh lebar dari pondasi telapak tersebut.



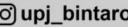
tulangan lentur pada pondasi empat persegi panjang :

- dalam arah memanjang, tulangan lentur harus disebar merata ke seluruh lebar dari pondasi telapak
- untuk tulangan dalam arah pendek, maka sebagian luas tulangan lentur (sebesar $\gamma_s A_s$) harus didistribusikan merata dalam suatu jalur selebar ukuran dari sisi pendek pondasi. Sisa tulangan lainnya (sebesar (1 – γ_s) A_s), didistribusikan di luar jalur tadi. Sisa tulangan yang ada tersebut jumlahnya tidak boleh kurang dari kebutuhan tulangan minimum untuk susut dan suhu. Besaran γ_s ditentukan sebagai berikut :

$$\gamma_z = \frac{2}{\beta + 1}$$
 dengan $\beta = \frac{\text{panjang sisi panjang pondasi}}{\text{panjang sisi pendek pondasi}}$

Batang tulangan tekan dari kolom harus disalurkan ke pelat pondasi dengan panjang penyaluran yang nilainya tidak kurang dari persamaan berikut :

$$l_{dc} = \frac{0.24 f_y}{\lambda \sqrt{f_c'}} d_b$$


- Nilai persamaan di atas tidak boleh kurang dari
- Untuk panjang penyaluran tulangan tarik

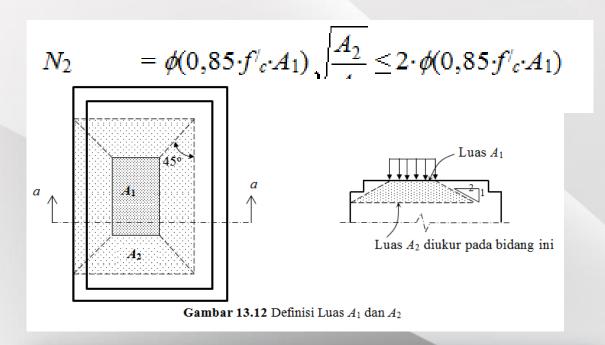
$$l_{d} = \left(\frac{f_{y}}{1,1\lambda\sqrt{f_{c}^{/}}} \frac{\psi_{t}\psi_{e}\psi_{s}}{\left(\frac{c_{b} + K_{tr}}{d_{b}}\right)}\right) d_{b}$$

$$l_{dc} = 10.043 \cdot f_{v} \cdot d_{b}$$

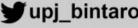
 Beban dari kolom disalurkan ke pondasi melalui mekanisme tumpu. Besaran beban yang bekerja pada dasar kolom, tidak boleh melampaui kuat tumpu dari beton, yang ditentukan sebesar :

$$N_1 = \phi(0.85 \cdot f_c \cdot A_1)$$

• Dengan $\phi = 0.65$, dan A_1 adalah luas bidang tumpu kolom. Nilai dari persamaan tsb. masih dapat diperbesar dengan mengalikannya terhadap faktor $\sqrt{\frac{A_2}{A_1}}$ apabila permukaan beton penumpu lebih lebar di kesemua sisinya daripada daerah yang dibebani.



• Namun nilai dari tidak boleh diambil lebih dari 2. Sehingga persamaan dapat dituliskan kembali menjadi :

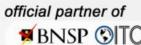


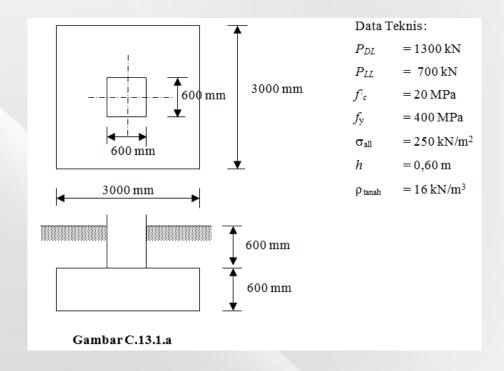
- Apabila beban aksial terfaktor, $P_{\prime\prime\prime}$ yang disalurkan kolom ke pondasi melebihi nilai dari N_1 atau N_2 , maka diperlukan sejumlah tulangan tambahan untuk menyalurkan kelebihan gaya ini.
- Tulangan yang disediakan ini dapat berasal dari tulangan kolom yang diteruskan ke pelat pondasi, atau bisa juga dengan menyediakan sejumlah tulangan stek/pasak.
- Kelebihan gaya yang harus dipikul oleh stek/pasak adalah :

$$P_{\mu \text{lebih}} = P_{\mu} - N_{\mu}$$

dan luas tulangan stek/pasak yang dibutuhkan dapat dihitung melalui persamaan :

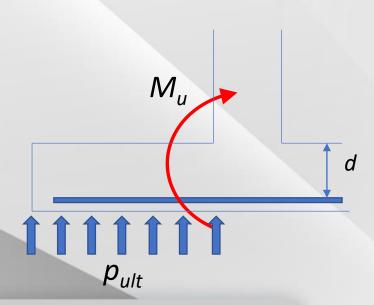
$$A_{st} = \frac{P_{u \text{ lebih}}}{f_y} > 0.005A_g$$

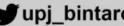


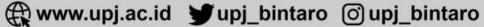


Contoh 1

- Lakukan desain tulangan lentur pondasi telapak bujur sangkar pada Gambar
- Pondasi memikul beban dari kolom akibat beban mati sebesar 1300 kN dan beban hidup 700 kN.
- Mutu beton $f'_{f} = 20$ MPa dan mutu baja tulangan $f_{e} = 400$ MPa. Daya dukung ijin tanah sebesar $250 \, \mathrm{kN/m^2}$.


1. Hitung momen lentur di muka kolom


$$d_{\text{rerata}}$$
 = tebal pondasi – selimut – 1diameter tulangan
= $600 - 75 - 19 = 506 \text{ mm}$


Tegangan tanah ultimit akibat beban terfaktor besarnya adalah

$$p_{\text{ult}} = \frac{1,2(1.300) + 1,6(700)}{3 \times 3} = 297,78 \text{ kN/m}^2$$

$$M_{\rm u} = \frac{p_{netto} \cdot b \cdot l^2}{2} = \frac{297,78 \times 3 \times 1,2^2}{2} = 643,2 \text{ kN.m}$$

2. Hitung kebutuhan tulangan lentur

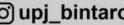
$$R_{\rm n}$$
 = $\frac{M_u}{\phi b d^2} = \frac{643.2 \times 10^6}{0.9 \times 3.000 \times 506^2} = 0.9342$

$$\rho_{\text{ perlu}} = \frac{0.85 f_c^{'}}{f_y} \left[1 - \sqrt{1 - \frac{2R_n}{0.85 f_c^{'}}} \right] = \frac{0.85 \times 20}{400} \left[1 - \sqrt{1 - \frac{2 \times 0.9342}{0.85 \times 20}} \right] = 0.0024$$

$$A_{\text{s perlu}} = 0.0024(3000)(506) = 3.643.2 \text{ mm}^2$$

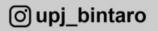
$$A_{\text{s min}} = 0.0018(3000)(600) = 3.240 \text{ mm}^2$$


Dipasang 13 D 19 atau D19 – 225


$$A_s = 13 \times \frac{1}{4} \pi 19^2 = 3.679 \text{mm}^2$$

$$s = \frac{3000 - (2 \times 75)}{13 - 1} = 237,5 \approx 225 \text{ mm}$$

3. Cek panjang penyaluran tulangan tarik


Tulangan berdiameter 19 mm dengan mutu beton $f'_c = 20$ MPa, diperoleh panjang penyaluran yang dibutuhkan sebesar 809,2 mm.

	abel 11.2 Panjang Penya $f_c = 20 \text{ MPa}$		aluran Tulangan, l_d (mn $f_c = 25 \text{ MPa}$		m) Pada Kondisi Tarik, $f_c = 30 \text{ MPa}$		$f_c = 400 \text{ MPa} (\psi_t = \psi_e)$ $f_c = 35 \text{ MPa}$		$\frac{f_c = \lambda = 1.00}{f_c = 40 \text{ MPa}}$	
d _b (mm)	a&b terpenuhi	Kasus Lain	a&b terpenuhi	Kasus Lain	a&b terpenuhi	Kasus Lain	a&b terpenuhi	Kasus Lain	a&b terpenuhi	Kasus Lain
13	553.7	830.5	495.2	742.9	452.1	678.1	418.6	627.8	391.5	587.3
16	681.5	1022.2	609.5	914.3	556.4	834.6	515.1	772.7	481.9	722.8
19	809.2	1213.9	723.8	1085.7	660.7	991.1	611.7	917.6	572.2	858.3
22	1157.5	1788.9	1035.3	1600.0	945.1	1460.6	875.0	1352.2	818.5	1264.9
25	1315.3	2032.8	1176.5	1818.2	1074.0	1659.8	994.3	1536.6	930.1	1437.4
29	1525.8	2358.0	1364.7	2109.1	1245.8	1925.3	1153.4	1782.5	1078.9	1667.4
32	1683.6	2602.0	1505.9	2327.3	1331.0	2124.5	1272.7	1966.9	1190.5	1839.9

Panjang penyaluran yang tersedia adalah $1200 - 75 = 1.125 > l_d$

1.125 mm

4. Cek transfer beban kolom ke pondasi

a. Kuat tumpu pada dasar kolom, N_1

$$P_{\rm u} = 1.2(1300) + 1.6(700) = 2.680 \,\mathrm{kN}$$

$$N_1 = \phi(0.85 \cdot f_c \cdot A_1) = 0.65(0.85)(20)(600 \times 600) = 3.978.000 \text{ N} = 3.978 \text{ kN} > P_u \text{ OK}$$

b. Kuat tumpu pada sisi atas pondasi, N_2

$$A_2 = 3000 \times 3.000 = 9.000.000 \text{ mm}^2$$

$$A_1 = 600 \times 600 = 360.000 \text{ mm}^2$$

$$\sqrt{\frac{A_2}{A_1}} = 5$$

Sehingga $N_2 = 2N_1 = 2(3.978) = 7.956 \text{ kN} > P_u$

Dengan demikian sebenarnya tidak diperlukan tulangan tambahan berupa stek untuk menyalurkan beban kolom ke pondasi, namun SNI 2847:2013 pasal 15.8.2.1 mensyaratkan tulangan minimum sebesar 0,005 kali luas brutto komponen struktur yang ditumpu, dalam hal ini adalah luasan penampang kolom. Sehingga dibutuhkan luas tulangan minimum yang besarnya 0,005(600)(600) = 1800 mm², atau dapat digunakan tulangan stek 8D19.

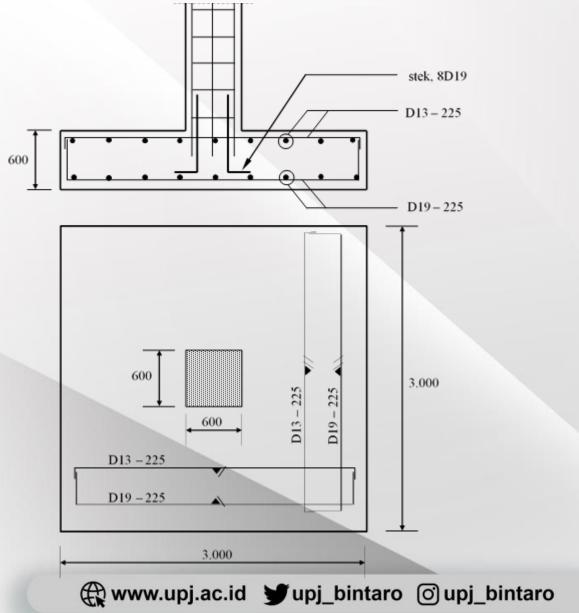
a. Panjang penyaluran tulangan pasak/stekPanjang penyaluran tulangan tekan dapat diambil dari nilai terbesar antara

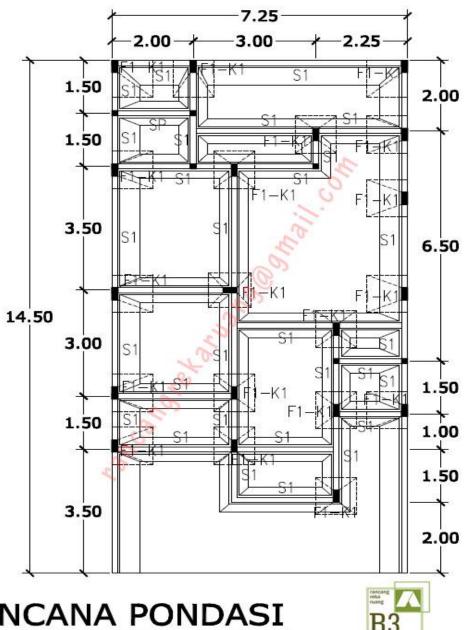
(1)
$$l_{dc} = \frac{0.24 f_y}{\lambda \sqrt{f_c'}} d_b = \frac{0.24 \times 400}{1.0 \times \sqrt{20}} \times 19 = 407,86$$

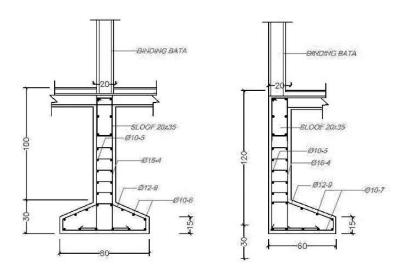
(2)
$$l_d = 0.043.d_b.f_y = 0.043(19)(400) = 326.8 \text{ mm}$$

(3) $l_d = 200 \text{ mm}$

Dari ketiga nilai tersebut, maka panjang penyaluran minimum yang disyaratkan adalah sebesar 407,86 mm. Pada kenyataannya tersedia panjang penyaluran sepanjang tebal pondasi telapak yaitu 600 mm.







SKALA 1: 100

PONDASI PLAT BETON 5KALA .: 20

PONDASI PLAT BETON 5KALA 1:20