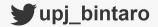


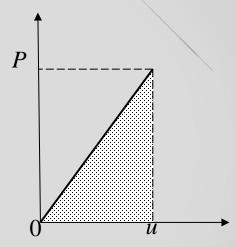
LENDUTAN BALOK METODE UNIT LOAD (BEAM)

ANALISIS STRUKTUR – TSI204 (3 sks)

Pertemuan 4

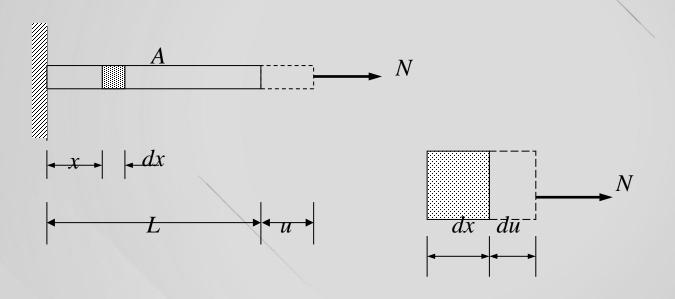


- Metode energi didasarkan pada prinsip konservasi energi, yang menyatakan bahwa kerja dari beban luar yang timbul pada suatu struktur (dinotasikan sebagai W_e), adalah sama dengan kerja dalam atau energi regangan, U_i, yang timbul pada saat struktur mengalami deformasi.
- Secara matematis, prinsip konservasi energi dapat dituliskan sebagai :



ENERGI REGANGAN

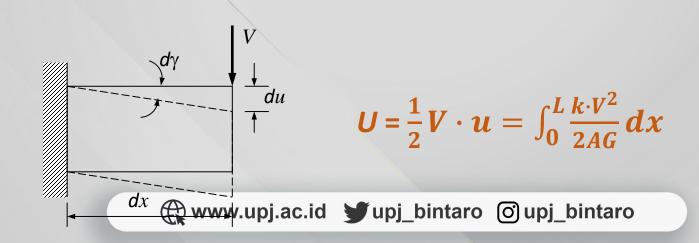
$$W_{\rm e} = \frac{1}{2} \times P \times u$$


$$U_{i} = \frac{1}{2} \times P \times u$$

Energi Regangan Akibat Beban Aksial

$$U = \int_0^L \frac{N^2}{2AE} \, dx \tag{6.6}$$

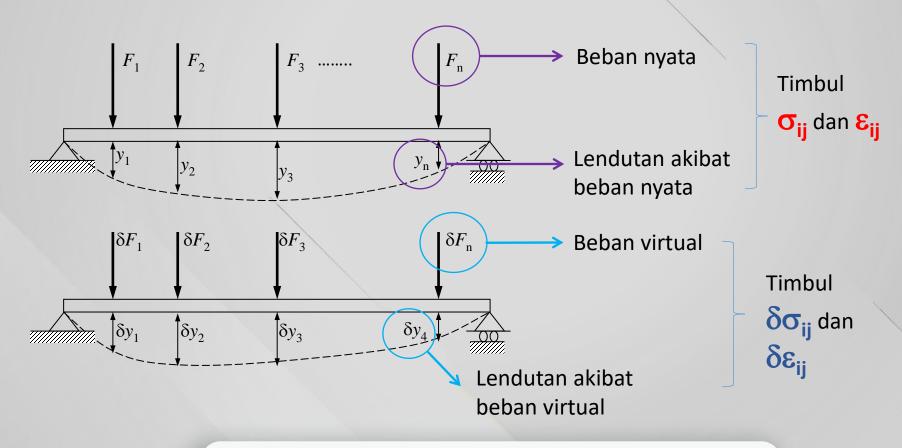
ENERGI REGANGAN


Energi Regangan Akibat Momen Lentur

$$d\theta = \frac{1}{R}dx = \frac{M}{EI}dx$$

$$dU = \frac{1}{2} M \cdot d\theta \ dU = \frac{1}{2} \frac{M^2}{EI} dx \longrightarrow U = \int_0^L \frac{M^2}{2EI} dx$$

Energi Regangan Akibat Gaya Geser



Secara umum dinyatakan bahwa suatu elemen badan bebas berada dalam kesetimbangan apabila:

$$\sum F_{i} \cdot \delta y_{i} = \int \sigma_{ij} \cdot \delta \varepsilon_{ij} \, dv$$

Secara analogi dapat dinyatakan pula:

$$\sum \delta F_i \cdot y_i = \int \delta \sigma_{ij} \cdot \epsilon_{ij} \, dv$$

dengan $\delta\sigma_{ij}$ adalah tegangan virtual akibat beban virtual δF_i , dan ε_{ij} adalah regangan nyata akibat lendutan nyata y_i .

• Dalam analisis pada umumnya besar beban virtual diambil sama dengan 1 (satu) satuan, sehingga umum disebut pula sebagai metode beban satuan (unit load). Secara sederhana persamaan dalam metode kerja virtual dapat dituliskan dalam bentuk umum

1.
$$y = \Sigma f \cdot dL$$

dengan:

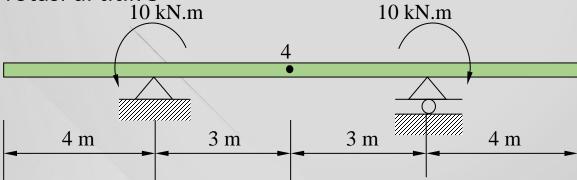
- 1 adalah beban virtual eksternal 1 (satu) satuan dalam arah Δ
- y adalah lendutan eksternal yang diakibatkan oleh beban nyata eksternal
- f adalah beban virtual internal
- dL adalah deformasi internal yang disebabkan oleh beban nyata

• Apabila dikehendaki untuk menentukan sudut rotasi di suatu titik dari elemen struktur, maka pada titik tersebut dapat diberi momen virtual yang besarnya adalah 1 (satu) satuan. Sebagai konsekuensi, momen virtual ini akan menimbukan beban virtual $f_{\rm q}$. Selanjutnya persamaan 6.25 dapat dituliskan pula dalam bentuk .

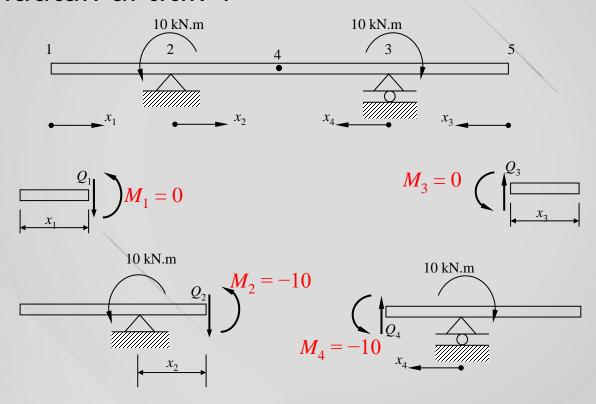
$$1 \cdot \theta = \sum f_{\theta} \cdot dL$$

dengan:

- 1 adalah momen virtual eksternal 1 (satu) satuan dalam arah θ
- θ adalah sudut rotasi eksternal akibat beban nyata
- f_{Θ} adalah beban virtual internal
- dL adalah deformasi internal yang disebabkan oleh beban nyata

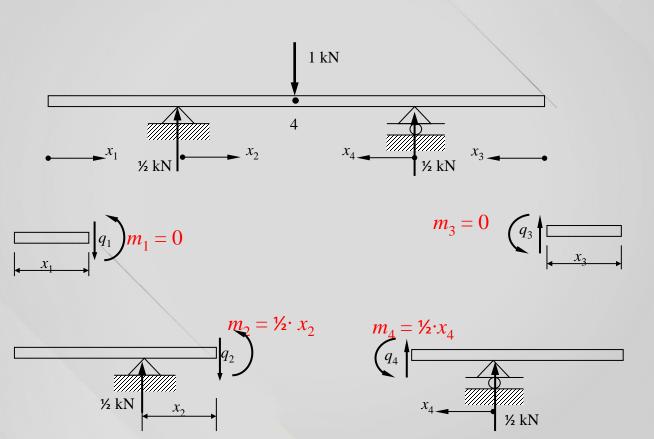


- Suatu struktur balok tertumpu sederhana seperti ditunjukkan dalam Gambar 6.16.a memiliki momen inersia penampang $I = 125(10^6)$ mm⁴ dan Modulus Elastisitas, E = 200 GPa. Dengan menggunakan metode kerja virtual, tentukan :
 - Besar lendutan di titik 4
 - Besar sudut rotasi di titik 5



• Mencari lendutan di titik 4

Momen akibat beban nyata, M



• Mencari lendutan di titik 4

Momen virtual, m

Persamaan kerja virtual.

$$1 \cdot y_{4v} = \int_0^3 \frac{(0.5 \cdot x_2)(-10)}{EI} dx_2 + \int_0^3 \frac{(0.5 \cdot x_4)(-10)}{EI} dx_4$$
$$= -\frac{45}{2EI} - \frac{45}{2EI} = -\frac{45}{EI} \text{ kN.m}^3$$

$$y_{4v} = -\frac{45kN.m^3}{\left(200.\frac{10^6kN}{m^2}\right)(125(10^6)(10^{-12})m^4)}$$
$$= -0,0018 \text{ m} = -1,8 \text{ mm}$$

Tanda negatif menunjukkan bahwa lendutan yang terjadi berarah ke atas (berkebalikan dengan arah beban 1 kN yang diberikan sebelumnya).



Mencari sudut rotasi di titik 5

Guna mencari sudut rotasi pada titik 5, maka berikan momen virtual 1 satuan di titik 5.

Mencari sudut rotasi di titik 5

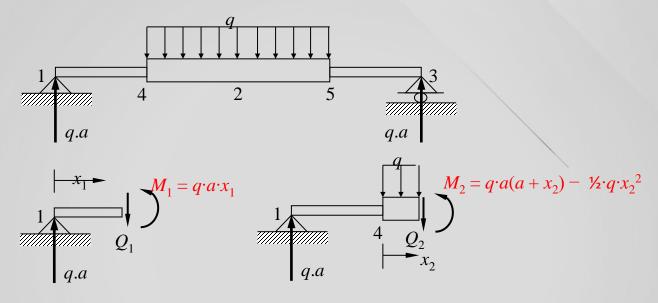
Persamaan kerja virtual. Dari persamaan kerja virtual (persamaan 6.31), maka akan diperoleh :

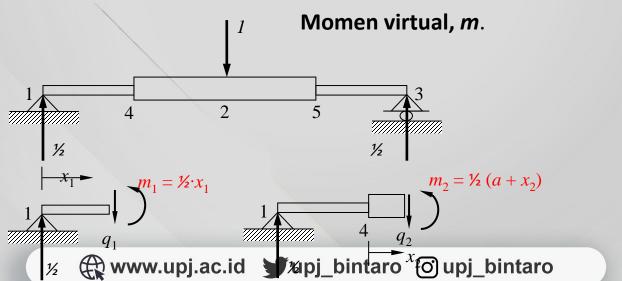
$$1 \cdot \theta_5 = \int_0^3 \frac{(-1/6 \cdot x_2)(-10)}{EI} dx_2 + \int_0^3 \frac{(-1+1/6 \cdot x_4)(-10)}{EI} dx_4$$
$$= \frac{45}{6EI} + \frac{30}{EI} - \frac{45}{6EI} = \frac{30}{EI} \text{ kN.m}^2$$

Substitusikan nilai *E* dan *I* yang diketahui, sehingga diperoleh besaran sudut rotasi di titik 5

$$\theta_5 = \frac{30kN.m^2}{(200.10^6kN/m^2)(125(10^6)(10^{-12})m^4)} =$$
0,0012 radian

• Gunakan metode kerja virtual untuk menentukan besarnya lendutan di titik 2. Perhatikan bahwa besaran momen inersia untuk segmen 4-5 adalah 21, sedangkan segmen 1-4 dan 5-3 memiliki momen inersia penampang sebesar 1. Asumsikan struktur memiliki modulus elastisitas yang seragam yaitu E. (Gambar 6.17.a).





Momen akibat beban nyata, M.

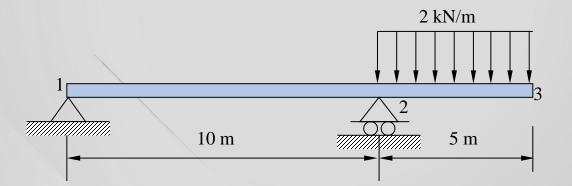
Persamaan kerja virtual. Dengan menggunakan persamaan kerja virtual (persamaan 6.30), maka akan diperoleh (Gambar 6.17.c) :

1.
$$y_{2v} = 2 \left[\int_0^a \frac{(0.5x_1)(q \cdot a \cdot x_1)}{EI} dx_1 + \right]$$

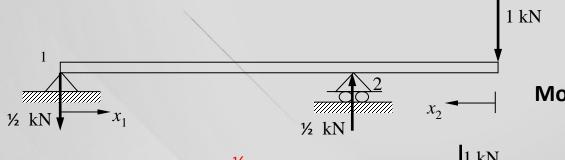
$$\int_0^a \frac{1/2(a+x_2)(q \cdot a(a+x_2) - 0.5 \cdot q \cdot x_2^2)}{2EI} dx_2 \bigg]$$

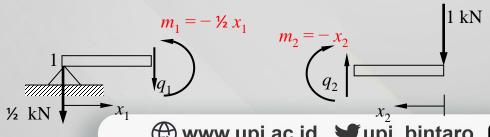
$$= 2 \left[\frac{q \cdot a^4}{6EI} + \frac{49q \cdot a^4}{96EI} \right] = 2 \left[\frac{65q \cdot a^4}{96EI} \right]$$

$$y_{2v} = \frac{65q \cdot a^4}{48EI} \text{ kN.m}^3$$



• Gunakan metode kerja virtual untuk menentukan besar lendutan di titik 3 dan sudut rotasi di titik 1 dari struktur balok tertumpu sederhana dalam Gambar 6.18.a. Gunakan nilai E = 200 GPa dan momen inersia penampang, $I = 70(10^6)$ mm⁴.





 $M_{1} = -2.5 x_{1} \qquad M_{2} = -x_{2}^{2}$ Q_{1} 2.5 kN x_{1}

Momen akibat beban nyata, M.

Momen virtual, m.

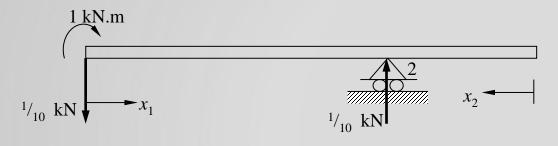
www.upj.ac.id yupj_bintaro oupj_bintaro

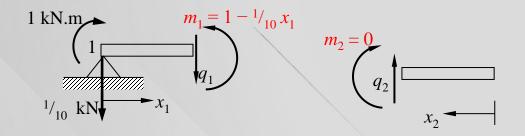
Persamaan kerja virtual. Gunakan persamaan kerja virtual (persamaan 6.30), maka akan diperoleh :

$$1 \cdot y_{3v} = \int_0^{10} \frac{(-0.5x_1)(-2.5x_1)}{EI} dx_1 + \int_0^5 \frac{(-x_2)(-x_2^2)}{EI} dx_2$$
$$= \frac{5000}{12EI} + \frac{625}{4EI} = \frac{6875}{12EI} \text{ kN.m}^3$$

Substitusikan nilai *E* dan *I* yang diketahui, sehingga diperoleh besar lendutan di titik 3

$$y_{3v} = \frac{6875kN.m^3}{(200.10^6kN/m^2)(70(10^6)(10^{-12})m^4)} = 40,92 \cdot 10^{-3} \text{ m (} \downarrow \text{)}$$





Mencari sudut rotasi di titik 1:

Untuk mencari sudut rotasi di titik 1, berikan momen virtual 1 kN.m pada titik 1.

Persamaan kerja virtual. Gunakan

persamaan kerja virtual

$$1 \cdot \theta_1 = \int_0^{10} \frac{(1 - 0.1x_1)(-2.5x_1)}{EI} dx_1$$
$$= -\frac{125}{EI} + \frac{250}{3EI} = -\frac{125}{3EI} \text{ kN.m}^2$$

Substitusikan nilai E dan I yang diketahui, sehingga diperoleh besar sudut rotasi di titik 1

$$\theta_1 = -\frac{125kN.m^2}{3(200.10^6kN/m^2)(70(10^6)(10^{-12})m^4)}$$

= - 0,00298 radian

