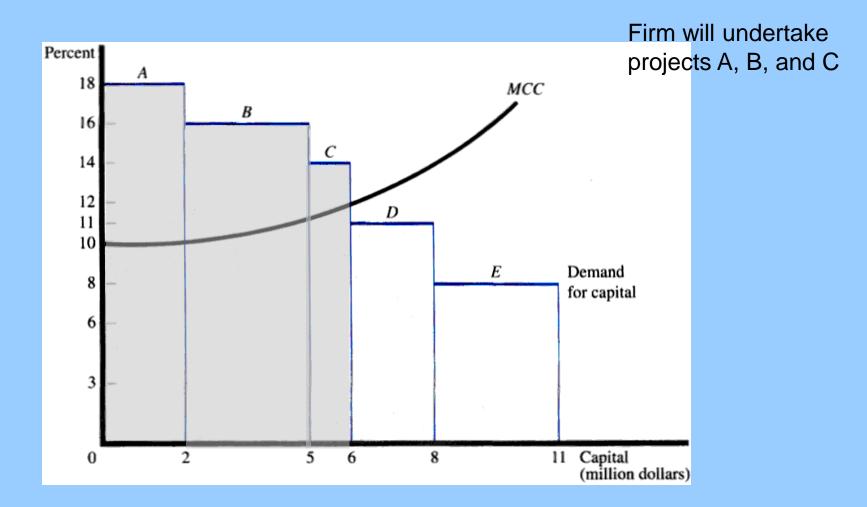
Managerial Economics in a Global Economy, 5th Edition by Dominick Salvatore

Chapter 14
Long-Run Investment Decisions:
Capital Budgeting


Capital Budgeting Defined

Process of planning expenditures that give rise to revenues or returns over a number of years

Categories of Investment

- Replacement
- Cost Reduction
- Output Expansion to Accommodate Demand Increases
- Output Expansion for New Products
- Government Regulation

- Demand for Capital
 - Schedule of investment projects
 - Ordered from highest to lowest return
- Supply of Capital
 - Marginal cost of capital
 - Increasing marginal cost
- Optimal Capital Budget
 - Undertake all projects where return is greater than marginal cost

Projecting Net Cash Flows

- Incremental basis
- After-tax basis
- Depreciation is a non-cash expense that affects cash flows through its effect on taxes

Example: Calculation of Net Cash Flow

Sales	\$1,000,000
1 \ \ / (-)	F00 000

Less: Variable costs 500,000

Fixed costs 150,000

Depreciation 200,000

Profit before taxes \$150,000

Less: Income tax

Profit after taxes

Plus: Depreciation

Net cash flow

\$90,000 \$90,000 200,000 \$290,000

Net Present Value (NPV)

$$NPV = \sum_{t=1}^{n} \frac{R_{t}}{(1+k)^{t}} - C_{0}$$

R_t = Return (net cash flow)

k = Risk-adjusted discount rate

 C_0 = Initial cost of project

Internal Rate of Return (IRR)

$$\sum_{t=1}^{n} \frac{R_t}{(1+k^*)^t} = C_0$$

R_t = Return (net cash flow)

 $k^* = IRR$

 C_0 = Initial cost of project

Capital Rationing

Profitability Index (PI)

$$PI = \frac{\sum_{t=1}^{n} \frac{R_{t}}{(1+k)^{t}}}{C_{0}}$$

R_t = Return (net cash flow)

k = Risk-adjusted discount rate

 C_0 = Initial cost of project

Cost of Debt (k_d)

$$k_d = r(1-t)$$

r = Interest rate

t = Marginal tax rate

 k_d = After-tax cost of debt

Cost of Equity Capital (k_e): Risk-Free Rate Plus Premium

$$k_e = r_f + r_p$$

$$ke = r_f + p_1 + p_2$$

r_f = Risk free rate of return

r_p = Risk premium

p₁ = Additional risk of firm's debt

 p_2 = Additional risk of firm's equities

Cost of Equity Capital (k_e): Dividend Valuation Model

$$P = \sum_{t=1}^{\infty} \frac{D}{(1+k_e)^t} = \frac{D}{k_e} \qquad k_e = \frac{D}{P}$$

P = Price of a share of stock

D = Constant dividend per share

k_e = Required rate of return

Cost of Equity Capital (k_e): Dividend Valuation Model

$$P = \frac{D}{K_e - g} \qquad k_e = \frac{D}{P} + g$$

P = Price of a share of stock

D = Dividend per share

k_e = Required rate of return

g = Growth rate of dividends

Cost of Equity Capital (k_e): Capital Asset Pricing Model (CAPM)

$$k_e = r_f + \beta (k_m - r_f)$$

r_f = Risk-free rate of return

 β = Beta coefficient

k_m = Average rate of return on all shares of common stock

Weighted Cost of Capital: Composite Cost of Capital (k_c)

$$k_c = w_d k_d + w_e k_e$$

w_d = Proportion of debt

 k_d = Cost of debt

w_e = Proportion of equity

 k_e = Cost of equity