Managerial Economics in a Global Economy, 5th Edition by Dominick Salvatore

Chapter 2 Optimization Techniques and New Management Tools

Expressing Economic Relationships

Equations:

 $TR = 100Q - 10Q^2$

Tables: Graphs:

Total, Average, and Marginal Cost

Total, Average, and Marginal Cost

Profit Maximization

Q	TR	ТС	Profit
0	0	20	-20
1	90	140	-50
2	160	160	0
3	210	180	30
4	240	240	0
5	250	480	-230

Profit Maximization

Concept of the Derivative

The derivative of Y with respect to X is equal to the limit of the ratio $\Delta Y/\Delta X$ as ΔX approaches zero.

Constant Function Rule: The derivative of a constant, Y = f(X) = a, is zero for all values of a (the constant).

$$Y = f(X) = a$$
$$\frac{dY}{dX} = 0$$

Power Function Rule: The derivative of a power function, where a and b are constants, is defined as follows.

$$Y = f(X) = a X^b$$

$$\frac{dY}{dX} = b \cdot a X^{b-1}$$

Sum-and-Differences Rule: The derivative of the sum or difference of two functions U and V, is defined as follows.

$$U = g(X) \qquad V = h(X) \qquad Y = U \pm V$$

$$\frac{dY}{dX} = \frac{dU}{dX} \pm \frac{dV}{dX}$$

Product Rule: The derivative of the product of two functions U and V, is defined as follows.

$$U = g(X)$$
 $V = h(X)$ $Y = U \cdot V$

$$\frac{dY}{dX} = U\frac{dV}{dX} + V\frac{dU}{dX}$$

Quotient Rule: The derivative of the ratio of two functions U and V, is defined as follows.

$$U = g(X)$$
 $V = h(X)$ $Y = \frac{U}{V}$

$$\frac{dY}{dX} = \frac{V \frac{dU}{dX} - U \frac{dV}{dX}}{V^2}$$

Chain Rule: The derivative of a function that is a function of X is defined as follows.

$$Y = f(U) \qquad U = g(X)$$
$$\frac{dY}{dt} = \frac{dY}{dt} \cdot \frac{dU}{dt}$$

dU

dX

dX

Optimization With Calculus

Find X such that dY/dX = 0 Second derivative rules: If d²Y/dX² > 0, then X is a minimum. If d²Y/dX² < 0, then X is a maximum.

New Management Tools

- Benchmarking
- Total Quality Management
- Reengineering
- The Learning Organization

Other Management Tools

- Broadbanding
- Direct Business Model
- Networking
- Pricing Power
- Small-World Model
- Virtual Integration
- Virtual Management