# Introduction to Enterprise System



## **Learning Objectives**

Discuss the evolution and key business benefits of enterprise systems

- Explain the role of enterprise systems in supporting business processes
- Differentiate the different categories of data within SAP ERP
- Understand the major options for reporting

## **Enterprise System**

Complex and powerful information systems

SAP Enterprise Resource Planning (ERP) system is the world's most popular

## **Architecture of Enterprise System**

& Client-server
& Server-oriented

#### Three Layers of the Client-server Architecture



## **Client-server**

Internet uses a three-tier architecture
Advantages:

- Reduced costs
- Scalability

Scalability refers to the ability of software and hardware to support a greater number of users over time

## **Service-oriented Architecture**

#### Web services

- Used to expose ES (and other system) functionality
- Standard interface input and output

#### Composite applications

- Connect multiple applications via Web services (including mashups or composite applications)
- Build new capabilities without changing the underlying applications

#### Main advantages:

- Standardization is easy
- Lower costs & complexity of integration
- Reuse
- Flexibility

## **Enterprise Systems Application Suite**

- Collection of inter-company systems and intracompany ERP system is called an application suite
- Enterprise Resource Planning (ERP)
- Supply Chain Management (SCM) and Supplier Relationship Management (SRM) – production planning, transportation, logistics, quotation, contracts
- Product Lifecycle Management (PLM) research, design, and product management
- Customer Relationship Management (CRM) marketing, sales, service

## **The ES Architecture Suite**



- Organizational data (levels, elements)Master data
- Transaction data
  - Associated with process steps

## **Organizational Data/Level/Element**

- Defines the structure of the enterprise in terms of legal or business purposes. Examples include:
  - Legal entities, plants, storage areas, sales organizations, profit centers, subsidiaries, factories, warehouses
- Client, Company, and PlantData rarely changes (static data)

 Highest organizational level
 Represents the enterprise; comprised of many companies

## **Organizational Level – Company Code**

Central organizational element in financial accounting

- Books are maintained at this level for legal reporting
- Identifies legal entities in an enterprise (Client)
- Legally independent from other companies in the enterprise
- Client can have multiple company codes
- Company code must belong to only one client

- Performs multiple functions
- Used by many processes
- Represents factory, warehouse, office, distribution center, etc.
- Following functions are typically performed:
  - Products/services are created
  - Materials are stored and used for distribution
  - Production planning is carried out
  - Service or maintenance is performed

## **Organizational Data**



## **Master Data**

Long-term data that typically represent entities associated with various processes?

- Customer
- Vendor
- Material
- Typically include
  - General data (across company codes)
  - Financial data (CC specific)
  - Area-specific data (Sales, Purchasing, Plant)

## **Material Master**

Material master data is used in numerous processes

- Procurement who and how much
- Fulfillment product availability and shipping conditions
- Production
- Material planning
- Asset management
- Project systems
- Lifecycle data management

# Material Master [2]

- Materials data may be grouped into views relevant to one or more processes
- Basic data (materials number, description, weight) are relevant to almost all processes
- Data are grouped based on
  - Process
  - Material type
  - Organization element

Material type can impact screens, department/function data to be maintained, material numbers, appropriate procurement, and general ledger accounts

# Material Master Data



## **Material Types**

## Raw materials (ROH)

- Purchased, not sold, used in production
- Purchasing- and production-related views
- No sales-related view
- Semi-finished goods (HALB)
  - Produced using other materials (ROH, HALB)
  - Used in the production of other materials (HALB,FERT)
  - Not purchased or sold

# Material Types [2]

Finished goods (FERT)

- Produced using other materials (ROH, HALB)
- Sold to customers
- **Trading goods (HAWA)** 
  - Purchased and resold without additional processing
- Numerous other types

## **Material Groups**

Materials with similar characteristics

- For example, materials used in production or in sales
- In retail, we may have categories such as footwear, clothing, beverages
- Materials are grouped so that they can be managed collectively (e.g., planning)

## **Organizational Level**

Same material can be used differently by different organizational levels

- Different company codes
  - HALB in one, FERT in another
- Different plants
  - Only exports or imports in specified plants, not all
- Different sales-related organizational elements
  - Wholesale vs. retail

## **Transaction** Data

Data generated during execution of process steps

- Requires
  - Organizational data
  - Master data
  - Situational data

Who, what, when and where .....

- Example: Sales order creation
  - Organizational elements: Client, Company Code, Sales Area
  - Master Data: Customer, Material
  - Situational data: Date, Time, Person

## **Transaction Data** [2]



## Documents

## Record of transactions

- Transaction documents
  - Requisition, purchase order, invoice, delivery document, etc.
- FI documents
  - Record the impact on financial accounting
- CO documents
  - Record the impact on management accounting
- Material documents
  - Record the impact on material status (value, location)

## Reporting

Transactional system (OLTP) vs. informational system (OLAP)

- OLTP (transactional)
  - Detailed, transactional data
- Data warehouse
  - Data aggregation and reduction using
    - Qualitative reduction by aggregating by time period
    - Quantitative reduction by selecting key figures (KPI)
    - In ERP: Information structures
    - In BW: Infocubes, info providers, etc.
- OLAP (informational)
  - Various analysis tools
  - In ERP: Information systems (OLAP lite)
  - In BW: Various reporting tools

## **Reporting Options within SAP ERP**

п



## **Components of Information Structures**

| Period  | Characteristic       |          | Key figures       |                 |
|---------|----------------------|----------|-------------------|-----------------|
| Date    | Customer             | Material | Sales<br>quantity | Sales<br>amount |
| 5/12/09 | Rocky mountain bikes | DXTR8000 | 23                | \$64,400        |
| 5/19/09 | Philly bikes         | PRTR8000 | 45                | \$135,000       |
| 5/23/09 | Beantown bikes       | DXTR8000 | 34                | \$95,200        |
|         |                      |          |                   |                 |

## References

- E.F.Monk and B.J. Wagner. Concepts in Enterprise Resource Planning, 4th edition. Course Technology, 2013
- Magal and Word. Integrated Business Processes with ERP Systems. Wiley, 2012
- Sumner, Mary. Enterprise Resource Planning. Prentice Hall, 2005.
- Teaching Materials from SAP University Alliances