

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 The CSS Visual Model
	n	 The Box Model
n	 The Power and Problem with Floats
n	 CSS Positioning
n	 Core CSS Wrap-Up
n	 Hot Tips and More...

To understand and manage attractive design and layouts,
gaining an appreciation for the how to manage the CSS Box
Model, Floats and Positioning is paramount. In this third and
final refcard in the Core CSS series we turn our attention to the
visual models that exist within CSS. You’ll learn not only about
how visual models work, but how to troubleshoot and repair
common problems too.

The path to master today’s options for layout requires a significant
study of the way that browsers work with the markup and style
they’re interpreting. Current Web browsers implement what is
known as the “CSS Visual Model” and lay out content based on
a foundation of lines and boxes.

Lines and Boxes
It’s very likely you’ve heard the terms “inline” and “block” to
describe HTML and XHTML elements. I’ll review their meaning here
in the context of the model. An inline element by default is one that
lies on the line with no subsequent break, unless the line has come
to the end of available browser space in which to flow. Boxes that
fall on a line in this fashion are called line boxes (Figure 1).

The CSS 2.1 Visual Model, continued
The most critical piece to understand is that every element
creates a box. This box is the foundation for what is known as
the box model and is a critical component to understanding how
to style elements within your document.

A block level element by default defines a block, and there is a
break between it and the next element.

Every element box can be styled by the box components. In
CSS 2.1, the Box Model consists of the content at center, and
the top, right, bottom and left borders, padding and margin.
The borders, padding and margin values for each or any side of
the box are all optional and can be styled using CSS.

It’s important to point out that because of flow issues within a
browser, inline elements can’t take a width. Therefore, while you can
style other elements of an inline box, you can’t set an explicit width.

ABOUT THIS REFCARD

THE CSS VISUAL MODEL

THE BOx MODEL

Core CSS: Part III
By Molly E. Holzschlag

C
o

re
 C

S
S

:
P

ar
t

III

 w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#34

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Hot
Tip

Boxes only go to the width and/or height of their
content. You can control the width of block boxes
by providing a specified width, but in the case
of floats, you’ll need to use clearing and other
techniques to “stretch” element heights.

Figure 1. Imagine this is a series of text within a paragraph. Note how
the inline elements do not cause a line break, and that they generate
what is known as a “line box.”

Figure 2. I’ve taken the original text and placed it within a paragraph
element. Then, duplicated the element below, giving us two block
boxes each containing inline boxes.

Figure 3. The CSS Box Model.

http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

 Core CSS: Part III
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

The Box Model, continued
Understanding the box model is critical because it gives
designers a greater sense of what they can actually style. For
example, you can add backgrounds or styled borders to the
content surrounded by the box. A bit of a warning, though,
the Box Model in IE6 and below does not follow the CSS box
model. Therefore, it is necessary to use the correct DOCTYPE
declaration (See Core CSS: Part I Refcard) in IE6 and IE7 to
ensure the proper box model is in use. Otherwise, width
measurements will be significantly different.

About Normal Flow
Normal flow at its most simplistic is simply the default flow
of elements within a document. Here is an example of normal
browser flow when we diminish the width of the browser, content
will flow down and to the left (Figures 4-6). If we reverse the sizing
and expand the browser, the content will flow up and to the right
(simply reverse viewing order of Figures 4-6).

Hot
Tip

A great way to gain an appreciation of normal flow
is to simply create an HTML page with multiple
paragraphs of text, and then size and resize the

browser, watching how the flow behaves.

Hot
Tip Margin backgrounds in boxes are transparent.

Figure 4. A paragraph in the normal flow.

Figure 7. Floating allows for text to flow around a floated box. In this
case, the image is floated right, and the text flows around the image.

Figure 8. If the image is floated left, the text flows to the right.

Figure 5. As the browser window is resized, text flows down and to the
left. Notice the appearance of a scrollbar.

Figure 6. As we continue to make the browser window smaller, the
paragraph reflows to fit the available width, while the text flows to the
left in a downward manner, elongating the page.

Floats have become a very critical part of today’s CSS approach
to visual layout. At first glance, the concept is very simple. While
floating elements can assist us in doing all kinds of visual magic,
there are challenges inherent to using them, including the way
they are rendered in browsers.

The Basic Intention of Floats
Interestingly, floats were not really envisioned as a means for
creating columns, although that’s often how we use them.
Rather, they were developed to allow text to flow around
another element which has been set to the left or the right,
such as an image. This is something we see a great deal in
design, as you can see in Figure 7.

The more we use floats for layout, the more challenged we
are to find ways of controlling and breaking the manipulation
of flow. Floated elements are shifted to the left or right of
the normal flow. In the case of Figure 8, the image element is
shifted to the left and therefore the text flows to the right.

It’s important to note that the markup stays the same—it’s only
the CSS that changes. An example of the markup would be:

<h2>Barrel Cactus</h2>

<img src=”b-cactus.jpg” alt=”photo of blooming barrel

cactus” />

<p>The colors are beautiful, but the barrel cactus

has an inner secret: if you are in need of hydration

in the desert, this cactus has a lot of fluid inside

and has saved the lives of many.

The CSS values will of be different in terms of manipulating the
location of the image and the text flow, in the first case, the
image is floated right, and in the second, left. Other elements
will simply flow around the floated element once a float has
been applied.

THE POwER AND PROBLEM OF FLOATS

http://www.dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/corecss-part1

3

DZone, Inc. | www.dzone.com

 Core CSS: Part III
 tech facts at your fingertips

By containing elements, we can create contexts for interface
components. If I wanted to create three columns as above, I
could create three divs with specific widths, borders, padding
and margins for each of the columns, and then set that within
another div, which I would give an explicit width too, containing
the three individual columns:

<div>

 <div>column 1 </div>

 <div>column 2 </div>

 <div>column 3 </div>

</div>

Of course, using divs for everything is overkill, because many
HTML elements actually have this sort of mechanism built right
in! Consider an unordered list with three list items:

 column 1

 column 2

 column 3

As you can see, the is an element, and therefore
creates a box. We can then style that box as a container for
the list items residing within. If there’s a logical reason to use
a list, such as with navigation, or linked interface components,
consider using semantic elements instead. This is called minimal
markup and is an extremely helpful technique.

The Power and Problem of Floats, continued

Float Behavior
Understanding how floats behave (or don’t) within a browser
environment is critical to troubleshooting a variety of issues,
particularly when it comes to layout. While floats can be your
best layout friend in many, many situations, knowing how floats
behave in general will give you the upper hand!

The first thing to know is that floats are not in the normal flow.
This means that other text and elements will continue to flow
around the floated elements. In Figure 9, we see what happens
if two elements are floated to the right and left. If not contained
by another element that has an explicit width, the floated
elements will continue to spread apart as the browser size
increases, and come together as the browser size decreases.

Float Behavior, continued

Floats can be contained by setting explicit widths on containing
elements, and on the floated boxes themselves. This doesn’t
eradicate tolerance problems, but it gives you a more finite idea
of how to mathematically arrange your elements (Figure 12).

In order to get floats to stack up nicely next to one another
and avoid this behavior, we simply float them all in the same
direction, typically left (Figure 10).

What happens if there’s not enough room within the browser
(or the set width of a container element)? The subsequent
floated element “falls off” the line and seeks the first available
space (Figure 11).

Figure 9. One box floated left, another right. If not contained, these
boxes will continue to spread apart or get closer as the browser is resized.

Figure 12. By containing elements and giving them a width, we can
begin to create columns.

Figure 10. If we float elements in the same direction, they’ll line up
next to each other. This is one way of creating columnar designs.

Figure 11. If an element cannot fit into the available space, the box
will “fall off” the line and move to the first available space in the flow.

Hot
Tip

If you’ve ever had text begin to unintentionally
crawl up around the side of a floated box, the
solution is float clearing (see “Clearing Floats”
later in this reference).

Hot
Tip

IE6 will drop the float down in if there is no
space, incongruent with other browsers. If
you’re developing in a Firefox environment,

be sure to test constantly in IE as well. This issue,
referred to as “tolerance” can be remedied by modifying
widths slightly to accommodate IE.

Hot
Tip

There’s no such thing as “div” based design.

That term is popular but highly inaccurate. In

CSS, it’s not that we use divs to create boxes, but

that the element boxes are already there. Use divs only

where necessary for containment and structure.

http://www.dzone.com
http://www.refcardz.com

4

DZone, Inc. | www.dzone.com

 Core CSS: Part III
 tech facts at your fingertips

CSS positioning is a powerful piece of CSS that allows us to position
elements in a variety of ways. One of the problems with positioning is
that it has not been well articulated, particularly relative positioning,
over the years. It took me a long time to understand exactly what
relative positioning really was, or was useful for. Therefore, I’ll start
with relative positioning and work from there.

Relative
If the fathers of CSS had been thinking about naming it a little more
carefully relative positioning would be called “offset” positioning.

Essentials for relative positioning:
	 n A box with a position: relative; designation remains in the
 normal flow
	 n A box with position: relative; creates a new instance of
 normal flow within it
	 n Relative positioning is most useful for offsetting boxes
 or creating a positioning context (see Relatively Absolute
 later this reference)

Imagine three paragraphs of text in the normal flow (Figure 17).
Using CSS I’ve hidden the visibility of the text in the second
paragraph to make the visualization of relative positioning clearer.

Here’s some CSS that offsets the paragraph using relative positioning:

p {width: 400px; border: 1px solid blue;}
p#rel {position: relative; top: 50px; left: 50px;}

The offset can be seen in Figure 18.

At this point you’re probably wondering, what is that paragraph
being positioned to? This is why I say the term relative in this
instance is so confusing. The answer is not what you’d expect.
A relatively positioned element is positioned in relation to its
location in the normal flow. In other words, the browser still
“sees” the positioned element in the flow but on the design
surface, it’s visually moved from where it would have been. This is
why the big space is left behind, almost a ghost of the paragraph.
The browser interprets the element as being in the normal flow.

Absolute
Absolute positioning is a little clearer in its terminology, and perhaps
a bit more logical in its behavior. An absolutely positioned element:
	 n Is removed from normal flow
	 n Is positioned in relation to
 –a positioned parent element
 – the root element of HTML
 n Subsequent content flows into the now available space

The Power and Problem of Floats, continued

Clearing Floats
So what happens when you want to stop the flow of text, or a
floated box, and return to the normal flow? You have to clear
your floats (Figure 13).

In terms of floats for layout, if you want to be able to have
content below floated elements, such as a traditional “footer”
where site information will go, clearing is necessary. This allows
the subsequent elements to return to the normal flow (Figure 14).

There are numerous ways to clear floats. A very popular one is
the creation of a clear class and the use of the property “clear”
and a value of both:

.clear {clear: both;}

People will then use a div or a break element to clear the float:

<div class=”clear”></div> or
<br class=”clear” />

My preference of the two is the break element, as an empty
div is a non-empty element with nothing inside it. While still
slightly presentational, at least “break” has meaning in this case
(Figures 15 and 16).

CSS POSITIONINg

Figure 14. Once the float is properly cleared, we return to the normal flow, which is how we can

create a footer beneath the floated columns.

There are numerous ways to clear floats. A very popular one is the creation of a clear class and the

use of the property “clear” and a value of both:

.clear {clear: both;}

People will then use a div or a break element to clear the float:

<div class=”clear”></div> or

<br class=”clear” />

My preference of the two is the break element, as an empty div is a non-empty element with

nothing inside it. While still slightly presentational, at least “break” has meaning in this case (Figures

15 - 16).

Figure 15. The float is properly cleared. Notice how the column to the left doesn’t fill the entire

available space – this is normal behavior. The important issue is that the bottom-most element is

cleared and does not try to “creep up” into the available space.

Figure 16. Even when a tolerance problem forces the far right column off the line, notice that it does

not encroach upon the space above it. This is because it’s not in the normal flow. Also, note that

despite the tolerance issue, the bottom-most element remains clear of the floated elements.

CSS Positioning
CSS positioning is a powerful piece of CSS that allows us to position elements in a variety of ways.

One of the problems with positioning is that it’s not been well articulated, particularly relative

positioning, over the years. It took me a long time to understand exactly what relative positioning

really was, or was useful for. Therefore, I’ll start with relative positioning and work from there.

Relative

If the fathers of CSS had been thinking about naming it a little more carefully relative positioning

would be called “offset” positioning.

Essentials for relative positioning:

• A box with a position: relative; designation remains in the normal flow

• A box with position: relative; creates a new instance of normal flow within it

• Relative positioning is most useful for offsetting boxes or creating a positioning context (see

Relatively Absolute later this reference)

Imagine three paragraphs of text in the normal flow (Figure 17). Using CSS I’ve hidden the visibility

of the text in the second paragraph to make the visualization of relative positioning clearer.

Figure 17. Three paragraphs in the normal flow.

Figure 13. Clearing floats is the process of returning the next consecutive
element to the normal flow.

Figure 14. Once the float is properly cleared, we return to the normal
flow, which is how we can create a footer beneath the floated columns.

Figure 17. Three paragraphs in the normal flow.

Figure 18. The second paragraph, positioned relatively.

Figure 15. The float is properly cleared. Notice how the column to the
left doesn’t fill the entire available space—this is normal behavior. The
important issue is that the bottom-most element is cleared and does not
try to “creep up” into the available space.

Figure 16. Even when a tolerance problem forces the far right column off
the line, notice that it does not encroach upon the space above it. This is
because it’s not in the normal flow. Also, note that despite the tolerance
issue, the bottom-most element remains clear of the floated elements.

http://www.dzone.com
http://www.refcardz.com

5

DZone, Inc. | www.dzone.com

 Core CSS: Part III
 tech facts at your fingertips

CSS Positioning, continued

Here’s the CSS used to position the box:

p#rel {position: absolute; top: 50px; left: 50px;}

If we briefly revisit normal flow (Figure 19), we can compare the
before and after positioning.

Creating a Positioning Context: “Relatively Absolute”, continued

Remember, a relatively positioned box creates an instance of
normal flow, while it itself remains in the normal flow of the
document. Therefore, creating areas that stay together as a unit
can be accomplished by creating a containing element that is
relatively positioned without offset values:

ul#sub-nav {position: relative; width: 350px; padding:
40px; border: 1px solid black;}

I then styled the list items and links:

li {list-style-type: none;}

a {text-decoration: none;}

li#home {position: absolute; width: 100px; left: 10px;
border: 1px solid green;}

li#products {position:absolute; width: 100px;
absolute; left: 120px; border: 1px solid red;}

li#contact {position: absolute; width: 100px; left:
240px; border: 1px solid blue;}

This CSS removes the bullets from the list items. I then absolutely
position each list item box as I see fit, resulting in a box in the
normal flow with three links (Figure 23).

If the browser is resized, everything will flow normally, but the
absolutely positioned elements will retain their position within
the relative box.

Stacking Order: z-index
An important property in CSS is z-index. This property provides
us a third visual dimension of depth with any positioned element
(note that the element must be positioned to accept a z-index).
This way, we can stack boxes and have them overlap as we’d like.

In Figure 24, I created 3 boxes and used the following CSS to
cause them to overlap naturally, without using a z-index. This is
the default stacking order behavior when no z-index is involved.

div#sample1 {position: absolute; left: 10px; padding:
50px; background-color: blue;}

div#sample2 {position: absolute; left: 65px; padding:
50px; background-color: red;}

div#sample3 {position: absolute; left: 110px; padding:
50px; background-color: yellow;}

I can reverse the stack order using the z-index:

div#sample1 {position: absolute; left: 10px; padding:
50px; background-color: blue; z-index: 3;}

div#sample2 {position: absolute; left: 65px; padding:
50px; background-color: red; z-index: 2;}

div#sample3 {position: absolute; left: 110px; padding:
50px; background-color: yellow; z-index: 1;}

Fixed
Fixed positioning is actually a subset of absolute positioning
and can be very useful in creating static elements on the design
surface while other elements flow behind.

h1 {width: 100%; position: fixed; top: 0; left: 0;
border: 1px solid #999; background-color: #ccc;}

Elements that are fixed are done so in relation to the browser
chrome (Figure 21).

As I scroll the browser, the box remains fixed (Figure 22).

Creating a Positioning Context: “Relatively Absolute”
One technique that is very helpful to designers who are using a
combination of floats and positioning to accomplish their layouts
has been coined ”Relatively Absolute”.

Figure 19. Normal flow, again.

Figure 20. The second paragraph, positioned absolutely. Notice how the element is positioned

absolutely from the top, left area (this can be the HTML element or another element, such as a div,

that is positioned. The element is taken out of the normal flow, which is why the subsequent

paragraph flows up into the available space, unlike relative positioning.

Fixed

Fixed positioning is actually a subset of absolute positioning and can be very useful in creating static

elements on the design surface while other elements flow behind.

h1 {width: 100%; position: fixed; top: 0; left: 0; border: 1px solid #999; background-

color: #ccc;}

Elements that are fixed are done so in relation to the browser chrome (Figure 21).

Figure 21. The h2 gray box is fixed to the left and top of the browser chrome.

As I scroll the browser, the box remains fixed (Figure 22).

Figure 22. As I scroll, the text flows under the positioned box. True to its term, the box remains

fixed.

Hot Tip: Fixed positioning isn’t implemented in IE6, although IE7 does implement it, as does IE8. If

we were viewing this in IE6, the fixed box would simply scroll off just as if it were a non-positioned

element.

Creating a Positioning Context: “Relatively Absolute”

One technique that is very helpful to designers who are using a combination of floats and positioning

to accomplish their layouts has been coined ”Relatively Absolute”.

Remember, a relatively positioned box creates an instance of normal flow, while it itself remains in

the normal flow of the document. Therefore, to create areas that stay together as a unit can be

accomplished by creating a containing element that is relatively positioned without offset values:

ul#sub-nav {position: relative; width: 350px; padding: 40px; border: 1px solid black;}

I then styled the list items and links:

li {list-style-type: none;}

a {text-decoration: none;}

li#home {position: absolute; width: 100px; left: 10px; border: 1px solid green;}

li#products {position:absolute; width: 100px; absolute; left: 120px; border: 1px solid

red;}

li#contact {position: absolute; width: 100px; left: 240px; border: 1px solid blue;}

This CSS removes the bullets from the list items. Then, I absolutely position each list item box as I

see fit, resulting in a box in the normal flow with three links (Figure 23).

Figure 19. Normal flow, again.

Figure 23. Relatively absolute: Using a combination of positioning to
keep like items together within normal flow.

Figure 20. The second paragraph, positioned absolutely. Notice how
the element is positioned absolutely from the top, left area (this can be
the HTML element or another element, such as a div, that is positioned).
The element is taken out of the normal flow, which is why the subsequent
paragraph flows up into the available space, unlike relative positioning.

Figure 21. The h2 gray box is fixed to the left and top of the browser chrome.

Figure 22. As I scroll, the text flows under the positioned box. True to its term,
the box remains fixed.

Hot
Tip

Fixed positioning isn’t implemented in IE6, although
IE7 does implement it, as does IE8. If we were view-
ing this in IE6, the fixed box would simply scroll off
just as if it were a non-positioned element.

Figure 24. Default stacking order.

http://www.dzone.com
http://www.refcardz.com

 Core CSS: Part III
6

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-23-3
ISBN-10: 1-934238-23-6

9 781934 238233

5 0 7 9 5

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Using XML in Java

Core Mule 2

Getting Started with
Equinox and OSGi

SOA Patterns

Getting Started with EMF

Available:
Getting Started with
Hibernate Search
Core Seam
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse
Spring Annotations
Core Java
Core CSS: Part II

PHP
Getting Started with JPA
JavaServer Faces
Core CSS: Part I
Struts2
Core .NET
Very First Steps in Flex
C#
Groovy
NetBeans IDE 6.1 Java Editor

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FREE

Stacking Order: z-index, continued

Figure 25 shows the results.

It is important to understand that the higher the number, the
“closer” to the screen the item appears. Also, you do not have to
use sequential numbers. In fact, designers who want to be very
certain that a given element is always on top of a stack might use
numbers significantly higher than those lower in the stack:

div#sample1 {position: absolute; left: 10px; padding:

50px; background-color: blue; z-index: 2;}

div#sample2 {position: absolute; left: 65px; padding:

50px; background-color: red; z-index: 10;}

div#sample3 {position: absolute; left: 110px; padding:

50px; background-color: yellow; z-index: 3;}

Figure 26 shows the results, with the red box coming to the foreground.

ABOUT THE AUTHOR

Proving once and for all that

standards-compliant design

does not equal dull design,

this inspiring tome uses

examples from the landmark

CSS Zen Garden site as the

foundation for discussions

on how to create beautiful,

progressive CSS-based Web sites.

RECOMMENDED BOOK

BUY NOw
books.dzone.com/books/zencss

Molly E. Holzschlag
Molly E. Holzschlag is a well-known Web standards advocate, instructor, and
author. She is an Invited Expert to the W3C, and has served as Group Lead
for the Web Standards Project (WaSP). She has written more than 30 books
covering client-side development and design for the Web. Currently, Molly
works to educate designers and developers on using Web technologies in
practical ways to create highly sustainable, maintainable, accessible, interac-

tive and beautiful Web sites for the global community. She consults with major companies and
organizations such as AOL, BBC, Microsoft, Yahoo! and many others in an effort to improve
standards support, workflow, solve interoperability concerns and address the long-term
management of highly interactive, large-scale sites. A popular and colorful individual, Molly
has a particular passion for people, blogs, and the use of technology for social progress.

Web Site
http://www.molly.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: The Zen of CSS Design, Molly E. Holzschlag and Dave Shea, Peachpit Press, February 2005.

The goal of the Core CSS series is to ensure that readers are
empowered to understand the areas of CSS that are unclear and
confusing, as well as give insight into the way browsers behave.
Understanding CSS and how browser behaviors influence the
work you do empowers you to envision, create and code to a
high quality that will allow the sites and applications you design
to be manageable, scalable and attractive, too.

Another point to make regarding z-index is that each positioning
context allows for a new instance of z-index. This is why you
might see several instances of the same numbers that result in
different stacking orders—it just depends on what the designer
or developer is attempting to achieve.

CORE CSS wRAP-UP

Figure 26. Bringing a box to the foreground with z-index.

Figure 25. Reversing the stack using z-index.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/core-seam
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://books.dzone.com/books/zencss
http://books.dzone.com/books/zencss
http://www.molly.com

