

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 Element Selectors
n	 ID Selectors
n	 Descendent Selectors
n	 Attribute Selectors
n	 Combining Selectors
n	 Hot Tips and more...

Just in case you’ve not read Core CSS: Part I, I’ll briefly review
the purpose of a CSS selector. A selector in a style sheet signals
the browser to find matches within those markup (HTML,
XHTML, XML) documents to which the style sheet is related.

There are more than a few selectors available for use (Table 1),
but even intermediate and advanced CSS authors don’t always
have an opportunity to use some of them, largely due to cross-
browser support issues for a given selector. Core CSS: Part II will
cover CSS 2.0/2.1 selectors. Where a selector is unavailable in
contemporary Web browsers, a caution will be provided to alert
you to any support concerns.

To assist in visualizing how these selectors actually match, for
each example you’ll see an element, the corresponding CSS,
and a document tree that visualizes what is selected within a
sample document. Also provided are some use examples.

Element Selectors
Element selectors, also referred to as “type” selectors, select by
matching elements. They are very broad in scope. For example,
if I have a million documents with many more millions of h2
elements within them, by using an element selector I can single
handedly apply styles to all of those h2 elements using one
rule. Element selectors are supported in all CSS browsers and
are very widely used for these reasons.

Here’s a CSS rule using an element selector:

h2 {color: #f00; font-family: Garamond; font-size:
22px; font-variant: small-caps;}

In the corresponding markup document(s), all h2s are selected
and the style is applied (Figure 1).

Element Selectors, continued

Class Selectors
Class selectors are extremely useful selectors that allow authors
to add a class attribute to a given element in the markup, with a
custom value. Then using that value preceded by a dot, write a
corresponding rule using the class name.

An example of an element with an added class attribute in the
markup document would be:

<p class=”warning”>Any paragraph in any document on
any page containing this class will have the class
rules apply.</p>

In the CSS:

.warning {color: red; font-weight: bold;}

Figure 2 shows how this class, as written, will apply to both
elements with the class attribute named “warning”.

ALL ABOUT SELECTORS

C
o

re
 C

S
S

:
P

ar
t

II

 w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Core CSS: Part II
By Molly E. Holzschlag

→

Table 1. CSS Selectors Covered in this Refcard

Version Date

Element Selects by matching element

Class Selects by matching class name

ID Selects by matching id name

Pseudo Class Selects by matching predefined pseudo class

Descendent
(also known as “contextual”)

Selects by descendant elements

Child Selects by first-level (child) elements

Adjacent Sibling Selects by matching sibling element

Attribute Selects by matching attribute names and values

Pseudo Elements Selects by matching predefined pseudo element

Hot
Tip

There’s also a universal selector, *, which when
used will select every single element within a
document. It’s used in several hacks, including
the infamous “star html” hack, which is prob-

lematic and invalid. While the universal selector is important
to know about, it’s probably not going to be something you
use too often in real-world scenarios.

Figure 1. An HTML document tree showing that each of the h2s in the
document has been selected.

Figure 2. Selecting all elements with a class of warning.

#25

 Core CSS: Part II
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Class Selectors, continued

Multi-Classing
An interesting and occasionally useful technique is multi-classing.
This means using more than one class to get the style you’re
after. A good use scenario would be a portal site in which you
have multiple modules that have common colors and features,
but require different background images. Consider the following
style rules:

.module1 {width: 200px; margin: 5px; border:
1px solid blue;}

.weather {background-image: url(images/”sunshine.jpg”);}

To multiclass, I’d simply add both classes to the module element,
with each name separated by a space:

<div class=”module1 weather”> . . . </div>

The element will now pick up the styles of both classes. Typically,
use of 2-3 class names can be helpful within context, but it’s not
a practice I’d recommend using without a strong sense of your
site hierarchy and management.

It’s also important to point out that the source order of the class
names in the markup document is of no consequence. However,
if there are conflicts between the classes, sort order and specificity
rules in CSS will calculate which rule takes precedence.

ID Selectors
ID selectors are meant to identify a discrete portion of a
document. This means an ID name can be used exactly one
time in a given document. This is why ID’s are particularly useful
in CSS layout when identifying significant portions of the
document, such as “content” “nav” or “site-info”— because
they are unique, discrete pieces of the document structure.
Assuming only one document, here’s a right/wrong comparison:

Right:
<div id=”content”> . . . </div>
<div id=”sub-content”> . . . </div>

Wrong:
<div id=”content”> . . . </div>
<div id=”content”> . . . </div>

In the style sheet ID selectors are written using the hash “#”
(also known as an ‘octothorpe’ for the word geeks among you)
preceding a custom name.

#content {width: 500px; border: 1px solid #fff;}

Figure 3 shows how this will now select the div with the unique id
attribute named “content”.

ID Selectors, continued

Pseudo Class Selectors
A pseudo class selector is a set of predefined class-like selectors.
Pseudo class selectors are written with a colon followed by
the predefined pseudo class name. Pseudo classes can then
be attached to a variety of elements in order to achieve a
given result. It’s likely you’ve used pseudo classes as much
as element, ID, and class selectors, for a number of them are
integral to styling links (Table 2).

Note that :hover, :focus and :active are all referred to as
“dynamic pseudo classes” because along with presentation
they also allow for dynamic behavior, such as creating interesting
looks for navigation, assisting with usability, and styling form
controls. An example would be (Figure 4).

Child Selectors
Child selectors are created by combining a parent element
with the > combinator and a child element. This allows you to
style only the child element or elements of the parent, without
having those styles inherit down the tree. It’s also a great way

Hot
Tip

You can limit a class to a specific element by
placing the element selector before the class:
p.warning. If you were to do this, only the para-
graph will take on the class styles. Any other,

non-conflicting styles that exist for the element p will also
be sorted and included.

Hot
Tip

Avoid underscores and other special characters
in class and ID names. The best practice currently
is to use hyphenation: nav-main (not nav_main).
Also, while camelCasing is extremely useful to

coders, it can add a layer of extra testing because CSS requires
case-matching, so case within the markup documents and
any associated CSS must match for rules to apply.

Hot
Tip

While ID and Class names are in fact customized
to suit your needs, it’s considered best practice
to avoid presentational names such as .redfont
or #sidebar. What happens when the boss

says “update all the red fonts on the site to be blue?” Easy
enough to change the style in moments and update all those
fonts, but now the markup documents are littered with
class="redfont" when the actual visual result is blue! To
avoid confusion of this nature, use naming that is descrip-
tive (referred to as semantic naming) and where possible,
consider creating conventions to be used site-wide.

Figure 3. Using ID selectors to identify the content area. The id name
can only be used once per document, but many times within a site.

→

Table 2. Pseudo Class Selectors

Selector Purpose Example

:link Selects links that have not
been visited

a:link {color: blue;}

:visited Selects links that have been
visited

a:visited (color: violet;}

:hover Selects an element as the
mouse passes over.

a:hover {color: #ccc;}

:focus Selects the element that has
focus

a:focus {background-color:
orange;}

:active Selects a link that is being
activated

a:active {color: red;}

:first-child Selects an element’s first child div:first-child {font-style:
italic;}

:lang Selects by matching human
language

html:lang (de) {font-size: 80%;}

Figure 4. The form control that has focus (in this case the text input
box associated with “Name”) takes on the style you see here using
the :focus selector on the input element.

3

DZone, Inc. | www.dzone.com

 Core CSS: Part II
 tech facts at your fingertips

Child Selectors, continued
to reduce the use of class attributes, which help make managing
sites all the more easy. Consider Figure 5.

Here, we have a parent element, ul, and we want to style each
of the three list items below. The CSS rule would simply be:

ul>li {border: 0; margin 0; padding: 0;}

Now all the children of any ul will have 0 border, margin and
padding. Because in this example, the ul has an ID, we can use
that to limit this rule only to that discrete document element:

ul#nav > li {border: 0; margin 0; padding: 0;}

Not only has this limited the rule to the ul with an id of “nav”,
but it has also made the rule more specific both literally and
technically. Also, you’ll note that there’s no white space
surrounding the combinator in the first example, whereas in the
second, there is. Either way is acceptable according to the spec.

You can use as many children within the selector as is required.
In a scenario such as Figure 6, you could write a very specific
selector to select only the children of the nested ordered list
item and style it with a leading zero decimal.

The resulting CSS would be:

ul#nav > li > ul > li > ol > li {list-style-type:
decimal-leading-zero;}

Descendent Selectors
Descendent selectors, as with Child selectors, begin with
an element that has descendents. The combinator for
descendents is a space. Since children are descendents, we
can re-examine the same parent-child relationship we first did
when examining child selectors (Figure 7).

If I wanted to set a style for any descendent list items within an
unordered list using a descendent selector, I can do so as follows:

ul#nav li {list-style-type: none;}

Descendent Selectors, continued
The differences is that not only the li children of the ul will be
styled, but all li descendants of that ul and the ol will get the
same style as well since all list items descend from the original
unordered list (Figure 8).

As with child selectors, we can create strings to reach a particular
element within the tree:

ul#nav li ul li ol li {list-style-type: decimal-
leading-zero;}

The selector will now select the very last list item in Figure 8,
which is the child of the ordered list item element in the tree
hierarchy. None of the other list items will take on this rule.

Fortunately, Descendent selectors are widely supported in
current CSS browsers including IE 6.0 and later.

Adjacent Sibling Selectors
An Adjacent Sibling selector allows you to select an element based
on its nearest sibling element. Consider the following markup:

<div>
<h1>Main Content Header</h1>
<p>First paragraph</p>
<p>Second paragraph</p>
<p>Third paragraph</p>
</div>

It’s a common design theme to style a first paragraph somewhat
differently using a larger font, or emphasized font, bringing
the reader’s eye to the critical introductory material. Using an
Adjacent sibling selector, we can do this quite easily without
using a class attribute on the first paragraph. The combinator
for the Adjacent sibling selector is the plus sign, +.

h1+p {font-weight: bold;}

This selects the first adjacent paragraph element (Figure 9),
with no change to any of the other siblings.

You can use multiple sibling elements to reach a given
sibling. Let’s say you wanted to select not the first but the
third paragraph in the example and have it display as italic.
The syntax would be:

h1+p+p+p {font-style: italic;}

Figure 10 shows the selection.

Figure 5. An unordered list element (parent) with three list item child
elements.

Figure 7. Children are also descendents.

Figure 6. Tree depicting a nested ordered list within a nested unor-
dered list with a parent unordered list. Using Child selectors, we can
select children by following their ancestral path.

Figure 8. Descendent selectors select all descendents of the defined
parent element, in this case, nested unordered lists. Note that the list
item that is child to the ordered list element will also receive the style,
for it too is a descendent of the original parent list.

CAUTION: CHILD SELECTORS ARE NOT IMPLEMENTED
IN INTERNET EXPLORER 6.0 OR BELOW.

→

Figure 9. Selecting a sibling using Adjacent sibling selectors.

Figure 10. Selecting a further removed sibling using a string of
adjacent siblings.

4

DZone, Inc. | www.dzone.com

 Core CSS: Part II
 tech facts at your fingertips

Adjacent Sibling Selectors, continued

Attribute Selectors
Attribute selectors are a curious piece of selectors because
they really are more akin to programmatic pattern matching
than presentational design needs. There are four Attribute
selectors that are available in CSS 2.1 (Table 3).

To select by attribute name...

Compare the following two links:

<a href=http://molly.com/” title=”go to Molly’s Web
site”>Molly.Com, Inc.

Molly.Com, Inc.

In the first link, there’s a title attribute. Using the following CSS:

a[title] {font-style: italic;}

We can style any anchor elements with a title attribute present,
but the style will not apply where no title attribute is present
(Figure 11).

To select by attribute name and value...

Consider the following two HTML image elements:

To add a specific style to the first instance, you can use the
following syntax:

img[src=”photo.jpg”] {border: 2px solid #000;}

The selector will match only an image element with an attribute
of src=”images/photo.jpg” and no other image elements will
be selected (Figure 12).

Attribute Selectors, continued
To select by presence of multiple space separators
and hyphens...

Consider the following XHTML image elements:
<img src=”images/vacation01.jpg” alt=”Portland
vacation photo” />

<img src=”images/vaction03.jpg” alt=”vacation photo of
Portland” />

To add style to only those images that have an alt attribute (and
all your images should!), and a series of space separated words
that include “Portland” (note that the case must match as well)
you’d use the following syntax:

img[alt~=”Portland”] {border: 5px solid green;}

Figure 13 shows the results.

Similarly, you can select by the presence of an attribute name
plus a hyphenated, specified word within the value. Consider
the following HTML:

<p title=”nursery-rhyme”>Mary, Mary, quite contrary,
how does your garden grow?</p>

<p title=”song-lyric”>And she’s buying a Stairway to
Heaven</p>

<p title=”traditional-rhyme”>Roses are red, violets
are blue</p>

Add this CSS rule:

p[title|=”rhyme”] {color: blue;}

Both the first and third elements will take the style, whereas the
middle one will not. (Figure 14).

Pseudo Elements
As with pseudo classes, pseudo elements are predefined
elements within CSS. There are four of which to be aware, as
described in Table 4.

Figure 11. Applying style using an attribute name selector.

Figure 13. Applying a border to only the photos with multiple space
separated words where “Portland” appears within the image’s alter-
native text string.

Figure 12. Applying a border to only the photo using the complete
(name+value) attribute selector.

CAUTION: ADJACENT SIBLING SELECTORS ARE NOT
IMPLEMENTED IN INTERNET EXPLORER 6.0 OR BELOW.

Table 3. Attribute Selectors

Attribute Selector Pattern Matching Example

[name] Selects by presence of attribute
name for a given element

a[title]
{font-style: italic;}

[name+value] Selects by presence of the
attribute name plus its value

img[src=”photo.jpg”]

[name~=”value”] Selects by the attribute name
plus the presence of a specific
space separated word within the
attribute value

img[alt~=”Portland”]

[name|=”value”] Selects by the attribute name
plus the presence of a hyphenated
word within the attribute value

a[title|=”top-down”]

→

Figure 14. Applying style using pattern matching. Note however
that in the case of hyphen matching, order matters. The hyphenated
word must be first in the string. Had we switched the third paragraph’s
attribute to title="rhyme-traditional" the style should not apply.

CAUTION: ATTRIBUTE SELECTORS ARE NOT IMPLE-
MENTED IN INTERNET EXPLORER 6.0 OR BELOW.

Table 4. Pseudo Elements in CSS 2.1

Pseudo Element Purpose Example

:first-line Selects only the first line of text in a
given element.

blockquote:first-line
{font-weight: bold;}

:first-letter Selects only the first letter of text in a
given element

p:first-letter
{font-size: 250%}

:before Used to generate content before a
given element

q:before {content:
open-quote;}

:after Used to generate content after a
given element

q:after {content:
close-quote}

5

DZone, Inc. | www.dzone.com

 Core CSS: Part II
 tech facts at your fingertips

Pseudo Elements, continued
First line and letter pseudo elements
Both the :first-line and :first-letter pseudo elements are typically
used to add typographic features to a given set of text. The
following HTML block shows what happens in the document:

<p>Let’s be honest. We all make mistakes. Sometimes
we can be too hard on ourselves, or others, for those
mistakes. It makes me remember that long ago and far
away, someone very wise said:</p>

<blockquote>To err is human, to forgive divine.</
blockquote>

<p>Having both the capacity to be forgiving of others
and the ability to forgive yourself is part of
learning how to be wise.</p>

Using the decorative pseudo elements, here are the CSS
examples from Table 4:

blockquote:first-letter {font-size: 250%}
p:first-line {font-weight: bold;}

Figure 15 shows the results.

Both the first letter and line pseudo elements have good
support across browsers, including IE 6.0.

Generated Content
A fascinating if controversial portion of CSS is called generated
content. This is when, using the pseudo elements :before
and/or :after, you as the author can actually generate text,
symbols and images. What’s more, you can style them on the
page. Consider the quote from earlier:

<blockquote>To err is human, to forgive divine.</
blockquote>

Now, let’s generate quote marks and style them using CSS:

blockquote {font-size: 30px; font-weight: bold;}

blockquote:before {content: open-quote; color: red;
font-size: 120px;}

blockquote:after {content: close-quote; color: red;
font-size: 120px;}

Figure 16 shows the results in Firefox.

The caveat, and the cause of misuse and therefore controversy
has to do with the fact that the content generated by pseudo
elements results in pseudo content. In practical terms, this
means the content never actually appears in the content layer,
only the presentational layer!

In a situation where the generated content is largely decorative
or practical in some sense but does not inhibit access to important
data, this is fine. Take a look at the generated source by Firefox and
you’ll see the quotes called for do not appear in the code at all.

But what if we were to generate the message itself? In the HTML:

<blockquote></blockquote>

And in the CSS:
blockquote:after {content: “To err is human, to
forgive divine” font-size: 90px;}

Figure 17 shows the generated results.

However, when we look at the source code, we see that the
generated content does not appear within the code (Figure 18).

Therefore, if you are generating important content to the desktop
screen that must be comprehensible, generated content is not the
way to go. It can cause problems for copying, printing, reading,
saving, and for anyone using Internet Explorer IE7 or earlier,
simply non-existent due to complete lack of implementation
for the :before and :after pseudo elements.

Figure 15. Using first letter and line pseudo elements to apply style.
Notice that in the case of :first-line, the “line” is defined as whatever
amount of characters make up the first line. Because this is not always
the desired result, using min-width and max-width properties to limit
line length wherever possible can address this issue.

Figure 16. Using pseudo elements to generate and style the quote marks.

→

Figure 17. You can generate actual content, but it will only appear
on the presentational surface.

Figure 18. While we can visually see the generated content on the
screen, it does not appear within the actual body of the document.

Selectors can be combined, giving authors highly specific ways
of working to style and manage documents.

Grouping
Selector grouping is simply placing a number of selectors that all
share common properties separated by commas:
h1, h2, h3, h4, h5, h6, p, q, blockquote, td,
#content, .standard {color: #000; margin: 5px;}

Now all these selectors will share the declaration properties.

Combining Selector Types
As you’ve already seen in several of this refcard’s examples,
you can combine selector types in order to create what some
designers and developers refer to as complex selectors. Table 5

COMBINING SELECTORS

Hot
Tip

Grouping is useful when you have a lot of shared
features between elements. You can group those
elements as shown, and then create more specific
rules for individual elements. You might have heard

of “CSS reset” or “normalization” which uses this technique.

 Core CSS: Part II
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: The Zen of CSS Design, Molly E. Holzschlag and Dave Shea, Peachpit Press, February 2005.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-22-6
ISBN-10: 1-934238-22-8

9 781934 238226

5 0 7 9 5

ABOUT THE AUTHOR

Proving once and for all that

standards-compliant design

does not equal dull design,

this inspiring tome uses

examples from the landmark

CSS Zen Garden site as the

foundation for discussions

on how to create beautiful,

progressive CSS-based Web sites.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/zencss

Molly E. Holzschlag
Molly E. Holzschlag is a well-known Web standards advocate, instructor, and
author. She is an Invited Expert to the W3C, and has served as Group Lead
for the Web Standards Project (WaSP). She has written more than 30 books
covering client-side development and design for the Web. Currently, Molly
works to educate designers and developers on using Web technologies in
practical ways to create highly sustainable, maintainable, accessible, interac-

tive and beautiful Web sites for the global community. She consults with major companies and
organizations such as AOL, BBC, Microsoft, Yahoo! and many others in an effort to improve
standards support, workflow, solve interoperability concerns and address the long-term
management of highly interactive, large-scale sites. A popular and colorful individual, Molly
has a particular passion for people, blogs, and the use of technology for social progress.

Web Site
http://www.molly.com

Combining Selectors, continued
shows some examples as well as the selectors definition—and to
help you practice—the selector’s specificity. Read selectors from
the right of the selector—it helps!

The resources in Table 6 should help you get more information
on the topics discussed in this card.

More Core CSS Refcardz:
Core CSS: Part III—December 2008
Core CSS: Part I—Available Now!

RESOURCES

Table 6. Resources

URL Reference

http://www.w3.org/TR/CSS21/cascade.
html#specificity

Specificity in CSS 2.1 explained

http://www.w3.org/TR/REC-CSS2/cascade.
html#specificity

Specificity in CSS 2.0

http://gallery.theopalgroup.com/
selectoracle/

SelectOracle: Free online tool to help you
calculate selector specificity

http://developer.yahoo.com/yui/reset/ Yahoo! User Interface library reset

http://meyerweb.com/eric/thoughts/
2007/05/01/reset-reloaded/

Eric Meyer’s take on using reset or
“normalization"

Table 5. Combining selectors to create highly specific rules

Combined Selector Meaning Specificity (CSS 2)

#content div.module > p Selects child paragraphs descending
from a <div> element that has a class
of “module” and is within the uniquely
identified portion of the document that
is identified as “content”

1,1,2

#main-nav ul li ol >
li:hover

Selects only the first letter of text in a
given element

1,0,4 (CSS 2)
1,1,4 (CSS 2.1)

tr > td+td+td > table Any table element that is a child of
a table data element that is the third
sibling from a table row element.

0,0,5

#content ul > li + li
a[href=”http://molly.
com/”]

Any anchor with an href of http://
molly.com/ that is the second child
sibling from an unordered list element
descending from an element with an
ID of content.

1,0,4 (CSS 2)
1,1,4 (CSS 2.1)

Upcoming Refcardz: Available:

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FREE

Get More FREE Refcardz. Visit refcardz.com now!

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

