

MODERN CRYPTOGRAPHY PART I

CAPAIAN PEMBELAJARAN

- Mahasiswa memahami konsep kriptografi modern
- Mahasiswa memahami kategori chipper

Agenda.

- Kriptografi modern
- Kategori chipper
 - Stream cipher
 - Block cipher

KRIPTOGRAFI MODERN

- Kriptografi terbagi dalam 2 kelompok besar: (1) kriptografi sebelum era komputer digital; dan (2) kriptografi pada era digital.
- Kriptografi sebelum era komputer digital: kriptografi klasik/konvensional (huruf).
- Kriptografi pada era digital: kriptografi modern (biner).
- Kriptografi modern masih menggunakan dua teknik dasar kriptografi klasik, yaitu permutasi dan transposisi.
- Kriptografi modern menggunakan algoritma yang kompleks untuk mempersulit kriptanalisis untuk memecahkan chiperteks.

Į

KRIPTOGRAFI MODERN

Rangkaian Bit dan Operasi.

- Plainteks, kunci, dan chiperteks direpresentasikan dalam biner.
- Beberapa algoritma kriptografi modern memproses data dalam bentuk blok-blok bit.
- Rangkaian bit dipecah menjadi blok-blok bit dan dituliskan dalam sejumlah cara bergantung pada panjang blok.
- Contoh: Bit 100110100111
- Jika panjang bit tidak habis dibagi dengan ukuran blok yang ditetapkan, maka blok yang terakhir ditambahkan bit-bit semu, padding bit.

KRIPTOGRAFI MODERN

■ Cara lain adalah dengan merepresentasikan setiap blok-blok bit ke dalam bilangan HEX dan dengan melakukan operasi XOR sederhana, yaitu:

Enkripsi : C = P K
Dekripsi : P = C ⊕ K

Contoh: menentukan cipherteks dari plainteks 110110001101001111 menggunakan representasi:

I. HEX; dan

2. XOR dengan key = 5.

		II control	ASCII printable					Extended ASCII								
characters			characters						characters							
00	NULL	(Null character)	32	space	64	@	96	٠.	128	Ç	160	á	192	L	224	Ó
01	SOH	(Start of Header)	33	!	65	Ā	97	а	129	ü	161	í	193		225	ß
02	STX	(Start of Text)	34	"	66	В	98	b	130	é	162	Ó	194	т	226	Ô
03	ETX	(End of Text)	35	#	67	С	99	С	131	â	163	ú	195	-	227	Ò
04	EOT	(End of Trans.)	36	\$	68	D	100	d	132	ä	164	ñ	196	_	228	õ
05	ENQ	(Enquiry)	37	%	69	E	101	e	133	à	165	Ñ	197	+	229	Õ
06	ACK	(Acknowledgement)	38	&	70	F	102	f	134	å	166	а	198	ã	230	μ
07	BEL	(Bell)	39		71	G	103	g	135	ç	167	0	199	Ã	231	þ
80	BS	(Backspace)	40	(72	Н	104	h	136	ê	168	ż	200	L	232	Þ
09	HT	(Horizontal Tab)	41)	73	- 1	105	i	137	ë	169	®	201	F	233	Ú
10	LF	(Line feed)	42	*	74	J	106	j	138	è	170	7	202	1	234	Û
11	VT	(Vertical Tab)	43	+	75	K	107	k	139	ï	171	1/2	203	TE	235	Ù
12	FF	(Form feed)	44	,	76	L	108	- 1	140	î	172	1/4	204	F	236	ý Ý
13	CR	(Carriage return)	45	-	77	M	109	m	141	ì	173	i	205	=	237	
14	SO	(Shift Out)	46		78	N	110	n	142	Ä	174	«	206	#	238	-
15	SI	(Shift In)	47	1	79	0	111	0	143	Å	175	>>	207	ä	239	
16	DLE	(Data link escape)	48	0	80	Р	112	р	144	É	176		208	ð	240	=
17	DC1	(Device control 1)	49	1	81	Q	113	q	145	æ	177		209	Ð	241	±
18	DC2	(Device control 2)	50	2	82	R	114	r	146	Æ	178		210	Ê	242	
19	DC3	(Device control 3)	51	3	83	S	115	s	147	ô	179	T	211		243	37/4
20	DC4	(Device control 4)	52	4	84	Т	116	t	148	ö	180	4	212	È	244	¶
21	NAK	(Negative acknowl.)	53	5	85	U	117	u	149	ò	181	Á	213	1	245	§
22	SYN	(Synchronous idle)	54	6	86	V	118	V	150	û	182	Â	214	ĺ	246	÷
23	ETB	(End of trans. block)	55	7	87	W	119	w	151	ù	183	À	215	Î	247	,
24	CAN	(Cancel)	56	8	88	X	120	X	152	ÿ	184	©	216	Ϊ	248	۰
25	EM	(End of medium)	57	9	89	Υ	121	y	153	Ö	185	4	217	٦	249	
26	SUB	(Substitute)	58	:	90	Z	122	Z	154	Ü	186		218	Т	250	
27	ESC	(Escape)	59	;	91	[123	{	155	ø	187	ä	219		251	1
28	FS	(File separator)	60	<	92	1	124	- 1	156	£	188		220		252	3
29	GS	(Group separator)	61	=	93	1	125	}	157	Ø	189	¢	221	Ī	253	2
30	RS	(Record separator)	62	>	94	٨	126	~	158	×	190	¥	222	Ì	254	•
31	US	(Unit separator)	63	?	95	_			159	f	191	٦	223		255	nbsp
127	DEL	(Delete)														

KRIPTOGRAFI MODERN

Kasus Latihan #1.

Tentukan plainteks dari chiperteks berikut menggunakan metode dekripsi representasi: HEX

5 3 4 9 4 1 5 0 2 0 4 E 4 4 4 1 4 E 2 1

9

KRIPTOGRAFI MODERN

Kasus Latihan #2.

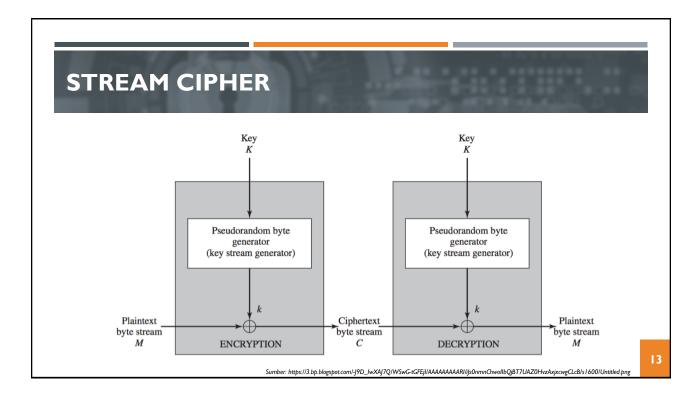
Tentukan plainteks dari chiperteks berikut menggunakan metode dekripsi XOR dengan key=5.

1 8 1 4 1 E 1 2 1 B

KATEGORI CIPHER

- Cipher terbagi atas 2 kategori:
 - Stream Cipher

Algoritma kriptografi yang memproses plainteks/cipherteks dalam bentuk bit tunggal (byte tunggal), dimana cipher medekripsi satu bit atau satu byte setipa saat.


Block Cipher

Algoritma kriptografi yang memproses plainteks/cipherteks dalam bentuk blok-blok bit (blok byte). Rangkaian bit dibagi menjadi blok-blok bit yang panjangnya sudah ditentukan. Misal: pesan dalam 64 bit, maka cipher memproses setara 8 karakter.

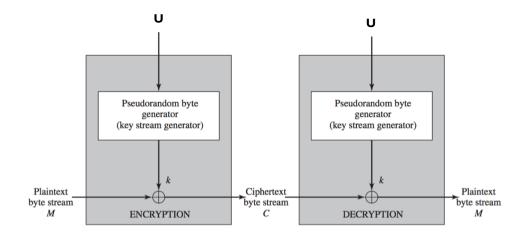
ī

STREAM CIPHER

- Stream cipher pertama kali dikenalkan oleh Vernam (algoritma vernam).
- Disebut juga sebagai cipher status, karena enkripsi tiap bit bergantung kepada status saat ini (current status).
- Proses enkripsi dilakukan dengan melakukan operasi XOR setiap bit plainteks dengan key yang sudah ditentukan, begitu juga sebaliknya untuk mendekripsikan chiperteks.
- Key pada stream cipher dikenal dengan nama keystream (aliran kunci) yang dibangkitkan oleh sebuah pembangkitn keystream (keystream generator).

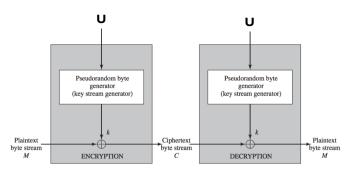
STREAM CIPHER

- Tingkat kemanan kriptografi stream cipher bergantung pada keystram generator.
 - Bit keystream = 0
 - Bit keystream dengan pola bit yang berulang
 - Bit keystream acak (truly random)


STREAM CIPHER | KEYSTREAM GENERATOR

Keystream Generator.

- Pembangkit kunci-alir diimplementasikan sebagai prosedur algoritmik dimana bit-bit kunci-alir akan dibangkitkan secara simultan.
- Prosedur algoritmik menerima masukan sebuah umpan (seed) U sebagai external key yang diberikan oleh pihak pengirim atau penerima pesan.
- Luaran prosedur tersebut merupakan sebuah fungsi U.
- Penerima dan pengirim harus menghasilkan bit-bit kunci yang sama dengan syarat keduanya memiliki umpan U yang sama.


15

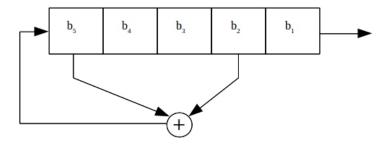
STREAM CIPHER | KEYSTREAM GENERATOR

STREAM CIPHER | KEYSTREAM GENERATOR

- Cipher alir menggunakan kunci **U** yang pendek untuk membangkitkan bit-bit kunci yang panjang
- Persamaan yang digunakan adalah 2ⁿ - 1, dimana n adalah banyaknya **U** bit.
- Bit-bit kunci –alir akan berulang hingga mencapai nilai persamaan tersebut.

17

STREAM CIPHER


Linier Feedback Shift Register (LFSR).

- Menggunakan register umpan-balik untuk membangkitkan kunci-alir.
- Register geser (shift) merupakan perangkat keras berupa sel-sel memori yang dpat digeser ke kiri maupun ke kanan sejauh satu sel.
- Terdiri dari 2 bagian:
 - I. Register geser, yaitu barisan bit-bit $(b_n b_{n-1} \dots b_4 b_3 b_2 b_1)$ yang panjangnya n (register geser n bit)
 - 2. Fungsi umpan-balik, yaitu fungsi yang menerima masukan dari register geser dan mengembalikan nilai fungsi ke register geser.

I R

STREAM CIPHER | LFSR

- Fungsi umpan balik adalah operasi XOR bit-bit tertentu di dalam register
- Perhatikan contoh LFSR 4-bit berikut.

Sumber: https://i.stack.imgur.com/1RUR9.jpg

STREAM CIPHER | LFSR

 Contoh kasus: Tentukan barisan bit-bit luaran dari stream cipher jika diketahui register diinisialisasi dengan bit 1 1 1.

Jawab.

i	Isi Register	Luaran				
0	1 1 1 1					
1	0 1 1 1	1				
2	1 0 1 1	1				
3	0 1 0 1	1				
4	1 0 1 0	1				
5	1 1 0 1	0				

Bit luaran akan terus muncul dan berulang hingga fungsi $2^n - 1$ tercapai.

MODERN CRYPTOGRAPHY PART I

