
VIBRATION
and

VIBRATION ISOLATION

11.1 SIMPLE HARMONIC MOTION

Units of Vibration

In most vibration problems we are dealing with harmonic motion, where the quantities can
be expressed as sine or cosine functions. The general formula for the harmonic displacement
of a body is given by

x = X sin ω t (11.1)

The velocity can be calculated by differentiating the displacement with respect to time

ẋ = d x

d t
= X ω cos ω t = V sin (ω t + π

2
) (11.2)

and the acceleration by differentiating the velocity

ẍ = d v

d t
= d2 x

d t2
= −X ω2 sin ω t = −A sin (ω t) (11.3)

These lead to simple relationships between the amplitudes

A = ω V = ω2 X (11.4)

Displacement, velocity, and acceleration are vector quantities that have a fixed angu-
lar relationship with each other, as the vector plot in Fig. 11.1 illustrates. Each vector
rotates counterclockwise in time about the origin at the radial frequency, ω. Velocity leads
displacement by 90◦ and acceleration leads displacement by 180◦.

The units used in vibration measurements are more varied than those for sound level
measurements. Amplitudes can be expressed in terms of displacement, velocity, acceleration,
and jerk (the rate of change of acceleration). Accelerations are given not only in terms of
length per time squared but also in terms of the standard gravitational acceleration, g. The
peak amplitudes are simply coefficients such as those shown in Eq. 11.4. The root mean
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Figure11.1 Vector Representation of Harmonic Displacement, Velocity, and
Acceleration

Table 11.1 Reference Quantities for Vibration Levels (Beranek and Ver, 1992)

Level (dB) Formula Reference (SI)

Acceleration La = 20 log (a / ao) ao = 10 μm / s2

ao = 10-5 m / s2

ao = 1 g

ao = 9.8 m / s2

Velocity Lv = 20 log (v / vo) vo = 10 n m / s

vo = 10-8 m / s

Displacement Ld = 20 log (d / do) do = 10 p m

do = 10-11 m

Note: Decimal multiples are 10-1 = deci (d), 10-2 = centi (c),
10-3 = milli (m), 10-6 = micro (μ), 10-9 = nano (n), and
10-12 = pico (p).

square (rms) value is the square root of the average of the square of a sine wave over a

complete cycle, which is
(√

2
)−1

or .707 times the peak amplitude. Vibration amplitudes

also can be expressed in decibels and Table 11.1 shows the preferred reference quantities.

11.2 SINGLE DEGREE OF FREEDOM SYSTEMS

Free Oscillators

In its simplest form a vibrating system can be represented as a spring mass, shown in Fig. 11.2.
Such a system is said to have a single degree of freedom, since its motion can be described
with a knowledge of only one variable, in this case its displacement.
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Figure11.2 Free Body Diagram of a Spring Mass System

In general if a system requires n numbers to describe its motion it is said to have n
degrees of freedom. A completely free mass has six degrees of freedom: three orthogonal
displacement directions and three rotations, one about each axis. A stretched string or a
flexible beam has an infinite number of degrees of freedom, since there are an infinite number
of possible vibration shapes. These can be analyzed in a regular manner using a superposition
of all possible vibrational modes added together; however, to do so exactly requires an infinite
number of constants, one for each mode. This mathematical construct, called a Fourier series,
is a useful tool even if it is not carried out to infinity.

The forces on a simple spring mass system are the spring force, which depends on the
displacement away from the equilibrium position, and the inertial force of the accelerating
mass. The equation of motion was discussed in Chapt. 6 and is simply a summation of the
forces on the body

m ẍ + k x = 0 (11.5)

which has a general solution

x = X sin (ωn t + φ) (11.6)

where ω n = √
k/m = undamped natural frequency (rad / s)

k = spring constant (N / m)
m = mass (kg)
φ = phase angle at time t = 0 (rad)
X = maximum displacement amplitude (m)

Although the spring mass model is simple, it is applicable as an approximation to many
complicated structures. Building elements such as beams, wood or concrete floors, high-rise
buildings, and towers can be modeled as spring mass systems and in more complex structures
as series of connected elements, each having mass and stiffness.

Damped Oscillators

In vibrating systems, when bodies are set into motion, dissipative forces arise that damp or
resist the movement. These are viscous forces that are proportional to the velocity of the
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body; however, not all types of damping are velocity dependent. Coulomb damping due to
sliding friction, for example, is a constant force. To model viscous damping, such as that
provided by a shock absorber, we refer to the spring mass system shown in Fig 11.3. Here
the damping force is proportional to the velocity and is negative because the force opposes
the direction of motion.

Fr = − c ẋ (11.7)

where Fr = viscous damping force, (N)

c = resistance damping coefficient (N s / m)

ẋ = d x

d t
= first time derivative of the displacement

= velocity (m / s)

If we gather together all forces operating on the mass on the left-hand side, and equate
it to the mass times the acceleration on the right-hand side in accordance with Newton’s law,
and rearrange the terms, we get

m ẍ + c ẋ + k x = 0 (11.8)

The general solution has the form x = ea t, where a is a constant to be determined. Substituting
into Eq. 11.8 we obtain (

a2 + c

m
a + k

m

)
e a t = 0 (11.9)

which holds for all t when (
a2 + c

m
a + k

m

)
= 0 (11.10)

This equation, known as the characteristic equation, has two roots

a1, 2 = − c

2 m
±

√( c

2 m

)2 − k

m
(11.11)

from which we can construct a general steady-state solution in the underdamped condition,
where the term under the radical is negative.

x = X e

− c t
2 m sin (ωn t + φ) (11.12)

The damped natural frequency of vibration is given by

ωd = 2 π fd =
√

ω2
n −

( c

2 m

)2
(11.13)

The damping coefficient, c, influences both the amplitude and the damped natural frequency
of oscillation, ωd , by slowing it down slightly.

An example of a damped oscillation is shown in Fig. 11.4. The envelope of the decay
is controlled by the damping coefficient. One measure of the degree of damping is the decay



Vibration and Vibration Isolation 385

Figure11.3 A Spring Mass System with Viscous Damping (Thomson, 1965)

Figure11.4 Response of a Damped Oscillator to an Impulse
(Rossing and Fletcher,1995)

time, τ = 2 m

c
, which is the time it takes for the amplitude of the envelope to fall to 1/e

(37%) of its initial value. It can be seen from Eq. 11.13 that, when one over the decay time is
equal to the undamped natural frequency, the term under the radical is zero and the system
does not oscillate. Such a system is said to be critically damped. The value of the damping
coefficient at this point is given the symbol cc = 2 m ωn , and the degree of damping is
expressed in terms of the ratio of the damping coefficient to the critical damping coefficient

η = c

cc
, which is called the damping ratio, and is expressed as a percentage of critical

damping.

Damping Properties of Materials

All materials have a certain amount of intrinsic internal damping, which depends on the
internal structure of the substance. Figure 9.10 showed the damping coefficients for a number
of common construction materials, which range from extremely low values in steel and other
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metals to very high values in resins and viscous liquids. These latter materials are used
in laminated glass specifically for their damping characteristics. In laminated glass a resin
is sandwiched between the two layers. This is called a constrained layer damper. Damping
compounds are commercially available in bulk and can be trowelled directly onto lightweight
metal panels. In order to be effective they should be applied thickly–to at least the thickness
of the vibrating panel.

In wood floor systems panel adhesive can help provide damping when applied between
sheets of flooring, between wood joists and plywood subfloors, and to stepped blocking
installed within the floor joists. In concrete floor systems the thickness and density of the
concrete determines the amount of damping. Additional damping can be provided by plates
welded to the joist webs and by lightweight interior partitions attached either above or
below the floor. Even if partitions are not load bearing, they can contribute significantly to
damping.

Driven Oscillators and Resonance

When a spring mass system is driven by a periodic force, it will respond in a predictable
manner, which depends on the frequency of the driving force. A familiar example is a child’s
swing. If a child pumps the swing by kicking his legs out at the proper moment, he can
increase the amplitude of the swing oscillation. The swing responds at the frequency of the
driving force but its amplitude increases substantially only when the period of the driving
force matches the natural period of vibration. Thus the child soon learns that he must kick
out his legs at the proper time if he is to increase his swing’s height.

There are many examples of resonant systems in architecture, including sound waves
in rectangular rooms, organ pipes, and other open or closed tubes; and structural systems
including floors, walls and wall panels, piping, and mechanical equipment. Each of these can
act as an oscillator and be driven into resonance by a periodic force. The equation describing
the motion of a forced oscillator with damping is

m ẍ + c ẋ + k x = F0 sin (ω t) (11.14)

The general solution has the form

x = X sin (ω t − φ) (11.15)

By substituting into Eq. 11.14 we obtain

m ω2 X sin (ω t − φ) − c ω X sin (ω t − φ + π

2
)

− k X sin (ω t − φ) + F0 sin (ω t) = 0
(11.16)

The relationship among all the forces acting on the mass is shown in Fig. 11.5, and from the
geometry of the force triangle we can solve for the amplitude X

X = F0√(
k − m ω2

)2 + (c ω)2
(11.17)

and

tan φ = c ω

k − m ω 2
(11.18)
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Figure11.5 Forced Response of a Spring Mass System with Viscous Damping
(Thomson, 1965)

We can use more general notation as follows

ωn = √
k/m = undamped natural frequency (rad / s)

cc = 2 m ωn = critical damping coefficient (N s / m)
η = c/cc = damping factor

X0 = F0 / k = static deflection of the spring mass under the steady force F0 (m)

and write Eq. 11.17 as

X

X0

= 1√[
1 − (ω/ωn)2

]2 + [
2η (ω/ωn)

]2
(11.19)

and Eq. 11.18 as

tan φ = 2 η (ω/ωn)

1 − (ω/ωn)2
(11.20)

Looking at Eqs. 11.15, 11.17, and 11.19 we see that the mass vibrates at the driving
frequency ω, but the amplitude of vibration depends on the ratio of the squares of the resonant
and driving frequencies. When the driving frequency matches the resonant frequency a
maximum in the displacement occurs. Note that the damping term 2 η

(
ω/ωn

)
keeps the

denominator from vanishing and limits the excursion at resonance.
Figure 11.6 shows a plot of the response of the system. As the driving frequency

moves toward the resonant frequency the output increases—theoretically reaching infinity
at resonance for zero damping. The damping not only limits the maximum excursion at
resonance but also shifts the resonant peak downward in frequency.

Vibration Isolation

When a simple harmonic force is applied to a spring mass system, it induces a response
that reaches a maximum at the resonant frequency of the system. If we ask what force is
transmitted to the foundation through the spring mass support we can refer again to Fig. 11.5.

The forces are transmitted to the support structure through the spring and shock absorber
system. The formulas remain the same whether the mass is resting on springs or hung
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Figure11.6 Normalized Excursion vs Frequency for a Forced Simple Harmonic
System with Damping (Thomson, 1965)

from springs. The balance of dynamic forces is shown, and using this geometry we can
resolve the force on the support system as

Ft =
√

(k X)2 + (c ω X)2 = X
√

k2 + c2 ω2 (11.21)

Using the expression given in Eq. 11.19 for the relationship between the applied force and
the displacement amplitude, we can solve for the ratio of the impressed and transmitted
forces

Ft =
F0

√
1 +

(c ω

k

)2

√[
1 − m ω2

k

]2

+
(c ω

k

)2

(11.22)

which can be written as

τ = Ft

F0

=

√
1 +

(
2 η

ω

ωn

)2

√√√√[
1 −

(
ω

ωn

)2
]2

+
(

2 η
ω

ωn

)2
(11.23)
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Figure11.7 Transmissibility of a Viscous Damped System
The Force Transmissibility and Motion Transmissibility of a Viscous
Damped Single Degree of Freedom are Numerically Identical

Figure 11.7 shows a plot of this expression in terms of the transmissibility, which is the
ratio of the transmitted to the imposed force. We can see that above a given frequency(√

2 fn

)
, as the frequency of the driving force increases, the transmissibility decreases and we

achieve a decrease in the transmitted force. This is the fundamental principle behind vibration
isolation.

Since the isolation is dependent on frequency ratio, the lower the resonant frequency,
the greater the isolation for a given excitation frequency. The natural frequency of the spring
mass system is

fn = ωn

2 π
= 1

2 π

√
k/m = 1

2 π

√
k g/m g (11.24)

which can be written in terms of the static deflection of the vibration isolator under the weight
of the supported object,

fn = 1

2 π

√
g/δ = 3.13√

δi

(Hz, δi in inches) (11.25)

or

fn = 1

2 π

√
g/δ = 5√

δcm

(Hz, δcm in centimeters) (11.26)
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A fundamental principle for effective isolation is that the greater the deflection of the iso-
lator, the lower the resonant frequency of the spring mass system, and the greater the
vibration isolation. We must counterbalance this against the mechanical stability of the
isolated object since very soft mounts are generally less stable than stiff ones. To increase
the deflection, we must increase the load on each isolator, so a few point-mount isolators
are preferable to a continuous mat or sheet. Thick isolators are generally more effective
than thin isolators since thick isolators can deflect more than thin ones. Finally, trapped air
spaces under isolated objects should be avoided and, if unavoidable, then wide spaces are
better than narrow spaces, because the trapped air acts like another spring. Note that the
greater the damping, the less the vibration isolation, but the lower the vibration amplitude
near resonance. This leads to a second important point, which is that damping is incorporated
into vibration isolators, not to increase the isolation, but to limit the amplitude at resonance.
An example might be a machine that starts from a standstill (zero frequency), goes through
the isolator resonance, and onto its operating point frequency. If this happens slowly we
may be willing to trade off isolation efficiency at the eventual operating point for amplitude
limitation at resonance.

If there is zero damping Eq. 11.23 can be simplified further. Assuming that the
frequency ratio is greater than

√
2, the transmissibility is given by

τ ∼=
[(

ω

ωn

)2

− 1

]−1

(11.27)

We substitute ω2
n = g/δ, where g is the acceleration due to gravity and δ is the static

deflection of the spring under the load of the supported mass, and the transmissibility
becomes

τ ∼=
[

(2 π f )2 δ

g
− 1

]−1

(11.28)

which is sometimes expressed as an isolation efficiency or percent reduction in vibration in
Fig. 11.8. This simplification is occasionally encountered in vibration isolation specifications
that call for a given percentage of isolation at the operating point. It is better to specify the
degree of isolation indirectly by calling out the deflection of the isolator, which is directly
measurable by the installing contractor, rather than an efficiency that is abstract and difficult
to measure in the field.

It is important to recall that these simple relationships only hold for single degree of
freedom systems. If we are talking about a piece of mechanical equipment located on a slab
the deflection of the slab under the weight of the isolated equipment must be very low—
typically 8 to 10 times less than the deflection of the isolator for this approximation to hold.
As the stiffness of the slab decreases, softer vibration isolators must be used to compensate.

When the excitation force is applied directly to the supported object or when it is self
excited through eccentric motion, vibration isolators do not decrease the amplitude of the
driven object but only the forces transmitted to the support system. When the supported
object is excited by the motion of the support base, there is a similar reduction in the forces
transmitted to the object. For a given directly applied excitation force, an inertial base
consisting of a large mass, such as a concrete slab placed between the vibrating equipment and
the support system, can decrease the amplitude of the supported equipment, but interestingly
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Figure11.8 Isolation Efficiency for a Flexible Mount

not the amplitude of the transmitted force. Inertial bases are very helpful in attenuating the
motion of mechanical equipment such as pumps, large compressors, and fans, which can
have eccentric loads that are large compared to their intrinsic mass.

Isolation of Sensitive Equipment

Frequently there are requirements to isolate a piece of sensitive equipment from floor-
induced vibrations. The geometry is that shown in Fig. 11.9. Since the spring supports are
in their linear region the relations are the same for equipment hung from above or supported

Figure11.9 Force Vectors of a Spring Mass System with Viscous Damping for
a Moving Support
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Figure11.10 Transmissibility Curves for Vibration Isolation (Ruzicka, 1971)

from below. The transmissibility is the same as that given in Eq. 11.23. In the case of isolated
equipment, instead of the force being generated by a vibrating machine, a displacement is cre-
ated by the motion of the supporting foundation. In Eq. 11.23 the terms for force amplitudes
are replaced by displacement amplitudes.

Summary of the Principles of Isolation

Figure 11.10 shows the result of this analysis for both self-excited sources and sensi-
tive receivers. The transmission equation is the same in both cases, differing only in the
definition of transmissibility, which for an imposed driving force is the force ratio and for
base motion is the displacement ratio. Above the resonant frequency of the spring mass
system the response to the driving function decreases until, at a frequency just over 40%
above resonance, the response amplitude is less than the imposed amplitude. At higher driv-
ing frequencies the response is further decreased. The lower the natural frequency of the
isolator—that is, the greater its deflection under the load of the equipment—the greater the
isolation.

11.3 VIBRATION ISOLATORS

Commercially available vibration isolators fall into several general categories: resilient pads,
neoprene mounts, and a combination of a steel spring and neoprene pad (Fig. 11.11). An
isolator is listed by the manufacturer with a range of rated loads and a static deflection, which
is the deflection under the maximum rated load. Most isolators will tolerate some loading
beyond their rated capacity, often as much as 50%; however, it is good practice to check
the published load versus deflection curve to be sure. An isolator must be sufficiently loaded
to achieve its rated deflection, but it must also remain in the linear range of the load versus
deflection curve and not bottom out.
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Figure11.11 Types of Vibration Isolators

Isolation Pads (Type W, WSW)

Isolation pads of felt, cork, neoprene impregnated fiberglass, or ribbed neoprene sometimes
sandwiched by steel plates usually have about a .05 inch (1 mm) deflection (fn = 14 Hz) and
are used in noncritical or high-frequency applications. Typically these products are supplied
in small squares, which are placed under vibrating equipment or piping. Depending on the
stiffness of the product, they are designed to be loaded to a particular weight per unit area of
pad. For 40 durometer neoprene pads, for example, the usual load recommendation is about
50 lbs/sq in. Where higher deflections are desired or where there is a need to spread the load,
pads are sandwiched with thin steel plates. Such pads are designated WSW or WSWSW
depending on the number of pads and plates.

Neoprene Mounts (Type N, ND)

Neoprene isolators are available in the form of individual mounts, which have about a
0.25 inch (6 mm) rated deflection, or as double deflection mounts having a 0.4 inch (10 mm)
deflection. These products frequently have integral steel plates, sometimes with tapped holes,
that allow them to be bolted to walls or floors. They are available in neoprene of various
durometers from 30 to 60, and are color-coded for ease of identification in the field. The
double deflection isolators can be used to support floating floors in critical applications such
as recording studios.

Steel Springs (Type V, O, OR)

A steel spring is the most commonly used vibration isolator for large equipment. Steel
springs alone can be effective for low-frequency isolation; however, for broadband isolation
they must be used in combination with neoprene pads to stop high frequencies. Otherwise
these vibrations will be transmitted down the spring. Springs having up to 5 inches (13 cm)
static deflection are available, but it is unusual to see deflections greater than 3 inches (8 cm)
due to their lateral instability. Unhoused open-spring mounts (Type O) must have a large
enough diameter (at least 0.8 times the compressed height) to provide a lateral stiffness equal
to the vertical stiffness. Housed springs have the advantage of providing a stop for lateral
(Type V) or vertical motion and an integral support (Type OR) for installing the equipment
at or near its eventual height, but are more prone to ground out when improperly positioned.
These stops are useful during the installation process since the load of the equipment or
piping may vary; particularly if it can be filled with water or oil. Built in limit stops are not
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the same as earthquake restraints, which must resist motion in any direction. Threaded rods,
allowing the height of the equipment to be adjusted and locked into place with double nuts,
are also part of the isolator assembly.

Spring isolators must be loaded sufficiently to produce the design deflection, but not
so much that the springs bottom out coil to coil. A properly isolated piece of equipment will
move freely if one stands on the base, and should not be shorted out by solid electrical or
plumbing connections.

Hanger Isolators (Type HN, HS, HSN)

Hanger isolators contain a flexible element, either neoprene (Type HN) or a steel spring
(Type HS), or a combination of the two (Type HSN), which supports equipment from above.
Spring hangers, like free standing springs, must have a neoprene pad as part of the assembly.
Hangers should allow for some misalignment between the housing and the support rod (30◦)
without shorting out and be free to rotate 360◦ without making contact with another object.
Threaded height-adjusting rods are usually part of these devices.

Air Mounts (AS)

Air springs consisting of a neoprene bladder filled with compressed air are also available.
These have the disadvantage of requiring an air source to maintain adequate pressure along
with periodic maintenance to assure that there is no leakage. The advantage is that they
allow easy level adjustment and can provide larger static deflections than spring isolators for
critical applications.

Support Frames (Type IS, CI, R)

Since the lower the natural frequency of vibration the greater the vibration isolation, it is
advantageous to maximize the deflection of the isolation system consistent with constraints
imposed by stability requirements. If the support system is a neoprene mount—for example,
under a vibrating object of a given mass—it is generally best to use the fewest number of
isolators possible consistent with other constraints. It is less effective to use a continuous
sheet of neoprene, cork, flexible mesh, or other similar material to isolate a piece of equipment
or floating floor since the load per unit area and thus the isolator deflection is relatively low.
Rather, it is better to space the mounts under the isolated equipment so that the load on
each mount is maximized and the lowest possible natural frequency is obtained. A structural
frame may have to be used to support the load of the equipment if its internal frame is not
sufficient to take a point load. Integral steel (IS) or concrete inertial (CI) or rail frame (R)
bases (Fig. 11.12) are used in these cases. A height-saving bracket that lowers the bottom of
the frame to 25 to 50 mm (1” to 2”) above the floor is typically part of an IS or CI frame.
Brackets allow the frame to be placed on the floor and the equipment mounted to it before
the springs are slid into place and adjusted.

When equipment is mounted on isolators the load is more concentrated than with
equipment set directly on a floor. The structure beneath the isolators must be capable of
supporting the point load and may require a 100 to 150 mm (4” to 6”) housekeeping pad to
help spread the load. Equipment such as small packaged air handlers mounted on a lightweight
roof can be supported on built up platforms that incorporate a thin (3”) concrete pad. Lighter
platforms may be used if they are located directly above heavy structural elements such as
steel beams or columns. In all cases the ratio of structural deflection to spring deflection must
be less than 1:8 under the equipment load.
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Figure11.12 Vibration Isolation Bases

Isolator Selection

A number of manufacturers, as well as ASHRAE, publish recommendations on the selection
of vibration isolators. By and large these recommendations assume that the building structure
consists of concrete slabs having a given span between columns. One of the most useful is that
published by Vibron Ltd. (Allen, 1989). This particular guide is reproduced as Tables 11.2
through 11.4. To use it, first determine the sensitivity of the receiving space, the floor
thickness, and span. The longer the span, the more the deflection of the floor, the lower its
resonant frequency, and the harder it is to isolate mechanical equipment that it supports.
From step one we obtain an isolation category, a number from 1 to 6, which is a measure of
the difficulty of successfully isolating the equipment. We then enter the charts in Tables 11.3
or 11.4 and pick out the base type and isolator deflection appropriate to the type of equipment
and the isolation category.

When a concrete inertial (type CI) base is required, we can calculate its thickness from
the nomographs given in Fig. 11.13. Using such a table is a practical way of selecting an
appropriate isolator for a given situation. Although these tabular design methods are simple
in practice, there is a great deal of calculating and experience that goes into their creation.

11.4 SUPPORT OF VIBRATING EQUIPMENT

Structural Support

A spring mass system, used to isolate vibrating equipment from its support structure, is based
on a theory that assumes that the support system is very stiff. In practice it is important to
construct support systems that are stiff, compared to the deflection of the isolators, and to
minimize radiation from lightweight diaphragms. Where the support structure is very light—
which can be the case for roof-mounted units—mechanical equipment is best supported on
a separate system of steel beams that in turn are supported on columns down to a footing. A
lightweight roof or similar structure can radiate sound like a driven loudspeaker, so mechan-
ical equipment should not be located directly on lightweight roof panels. Where there is no
other choice, and the roof slab is less than 4.5” (11 cm) of concrete, a localized concrete
housekeeping pad should be used, having a thickness of 4” (10 cm) to 6” (15 cm) and a length
12” (30 cm) longer and wider than the supported equipment. These pads help spread the load
and provide some inertial mass to increase the impedance of the support. Where it is not
possible to locate equipment above a column, it should be located over one or more heavy
structural members. Where supporting structures are less than 3.5” of solid concrete, use one
isolation category above that determined from Table 11.2 along with the concrete subbase.
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Table 11.2 Vibration Isolation Selection Guide (Vibron, 1989)
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Figure11.13 The Thickness of Concrete Inertial Bases (Vibron, 1989)

Examples of various recommendations on the support of rooftop equipment are shown in
Fig. 11.14 (Schaffer, 1991).

Inertial Bases

When the source of vibration is a piece of mechanical equipment with a large rotating mass or
a high initial torque, it is good practice to mount it on a concrete base that is itself supported
on spring isolators. The additional mass does not increase the isolation efficiency since the
springs must be selected to support both the equipment and the base, and the overall spring
deflection will probably not change appreciably. The advantage of having the base is that
for a given driving force, such as the eccentricity of a rotating part, there is a lower overall
displacement due to the extra mass of the combined base plus equipment. Inertial bases also
aid in the stabilization of tall pieces of equipment, equipment with a large rocking component,
and equipment requiring thrust restraint.

Concrete inertial bases are used in the isolation of pumps and provide additional frame
stiffness, which a pump frequently requires. Pump bases are sized so that their weight is
about two to three times that of the supported equipment. Any piping, attached to a pump
mounted on an isolated base, must be supported from the inertial base or by overhead spring
hangers. It must not be rigidly supported from a wall, floor, or roof slab unless it is in a
noncritical location.

Where unbalanced equipment, such as single- or double-cylinder low-speed air com-
pressors are to be isolated, the weight of the inertial base is calculated from the unbalanced
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Figure11.14 Structural Support of Rooftop Equipment (Schaffer, 1991)

force, which can be obtained from the manufacturer. These bases frequently must be five to
seven times the weight of the compressor to control the motion.

Concrete bases also offer resistance to induced forces such as fan thrust. Isolation
manufacturers (Mason, 1968) recommend that a base weighing from one to three times the
fan weight be used to control thrust for fans above 6” of static pressure.

Earthquake Restraints

In areas of high seismic activity, vibration isolated equipment must be constrained from
moving during an earthquake. The seismic restraint system must not degrade the performance
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Figure11.15 Earthquake Restraint (Mason Industries, 1998)

of the vibration isolation. Some specialized isolators incorporate seismic restraints, but most
vibration isolators do not since a restraint device must control motion in any direction.
A standard method of providing three-dimensional restraint is shown in Fig. 11.15 using
a commercial three-axis restraint system. Lightweight hanger-supported equipment can be
restrained by means of several slack braided-steel cables. Any earthquake restraint system
must comply with local codes and should be reviewed by a structural engineer.

Pipe Isolation

Piping can conduct noise and vibration generated through fluid motion and by being connected
to vibrating equipment. Fluid flow in piping generates sound power levels that are dependent
on the flow velocity. Pipes and electrical conduits that are attached directly to vibrating
equipment and to a supporting structure serve as a transmission path, which short circuits
otherwise adequate vibration isolation. Any rigid piping attached to isolated equipment such
as pumps, refrigeration machines, and condensers must be separately vibration isolated,
typically at the first three points of support, which for large pipe is about 15 m (50 ft). It
should be suspended by means of an isolator having a deflection that is at least that of the
supported equipment or 3/4”, whichever is greater.

There is a significant difference in the weight of a large water pipe, depending on
whether it is empty or filled. Isolated equipment will move up when the pipe system is
drained, and in doing so, will stress elbows and joints. The suspension system should allow
for normal motion of the pipe under these conditions. Risers and other long pipe runs will
expand and contract as they are heated and cooled and should be resiliently mounted. Even
when fluid is not flowing, a popping noise can be generated as the pipe slides past a stud or
other support point during heating or cooling.

In critical applications such as condominiums, water, waste, and refrigeration pipes
should be isolated from making contact with structural elements for their entire length.
Table 11.5 gives typical recommendations on the types of materials used for the isolation of
plumbing and piping. These recommendations also apply to the support of piping at points
where it penetrates a floor.

Several examples of proper isolation of piping connected to pumps are shown in
Fig. 11.16. On all piping greater than 5” (13 cm) diameter, flexible pipe couplings are neces-
sary between the pump outlet and the pipe run. Even with smaller diameter pipes they can be
very helpful in decreasing downstream vibrations and associated noise. They act as vibration
isolators by breaking the mechanical coupling between the pump and the pipe, and they
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Table 11.5 Typical Plumbing Isolation Materials

help compensate for pipe misalignment and thermal expansion. Flexible pipe connections
alone are usually not sufficient to isolate pipe transmitted vibrations but are part of an overall
control strategy, which includes vibration isolation of the mechanical equipment and piping.

In high pressure hydraulic systems much of the vibration can be transmitted through the
fluid so that pulse dampeners inserted in the pipe run can be helpful. These consist of a gas
filled bladder, surrounding the fluid, into which the pressure pulse can expand and dissipate.

Where pipes are located in rated construction elements, closing off leaks at structural
penetrations is critical to maintain the acoustical rating. Here the normal order of construction
dictates the method of isolation. In concrete and steel structures, slabs are poured and then
cored to accommodate pipe runs. In wood construction, piping is installed along with the
framing, often preceding the pouring of any concrete fill. In both building types holes should
be oversized by 1” (25 mm) more than the pipe diameter to insure that the pipe does not make
direct structural contact. They are then stuffed with insulation, safing, or fire stop, and sealed.
In slab construction the sealant can be a heavy mastic. With walls, the holes are covered with
drywall leaving a 1/8” (3 mm) gap that is caulked. Pipe sleeves, which wrap the pipe at the
penetration, are also commercially available. Details are shown in Fig. 11.17.

Electrical Connections

Where electrical connections are made to isolated equipment, the conduit must not short out
the vibration isolation. If rigid conduit is used it should include a flexible section to isolate
this path. The section should be long enough and slack enough that a 360◦ loop can be
made in it.

Duct Isolation

High-pressure ductwork having a static pressure of 4” (10 cm) or greater should be isolated
for a distance of 30 ft (10 m) from the fan. Ducts are suspended on spring hangers with a
minimum static deflection of 0.75” (19 mm), which should be spaced 10 ft (3 m) or less
apart.

Roof-mounted sheet metal ductwork, located above sensitive occupancies such as stu-
dios, should be supported on vibration isolators having a deflection equal to that of the
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Figure11.16 Vibration Isolation of Piping and Ductwork (Vibron, 1989)

Figure11.17 Pipe or Duct Penetration
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Figure11.18 Forced Excitation of an Undamped Two Degree of Freedom System
(Ruzicka, 1971)

isolated equipment to which they are attached, for the first three points of support. Beyond
that point the ducts can be supported on mounts having half that deflection.

11.5 TWO DEGREE OF FREEDOM SYSTEMS

Two Undamped Oscillators

Although the one degree of freedom model is the most commonly utilized system for most
vibration analysis problems, often situations arise that exhibit more complex motion. A
model of a two degree of freedom system is shown in Fig. 11.18. This system consists of two
masses and two springs with a sinusoidal force applied to one of the masses. The equations
of motion can be written as

m1 ẍ1 = k2 (x2 − x1) − k1 x1 + F0 sin ω t (11.29)

m2 ẍ2 = − k2 (x2 − x1) (11.30)

If we make the following substitutions

ω1 =
√

k1 / m1 X0 = F0 / k1

ω2 =
√

k2 / m2

and write the solution in terms of sinusoidal functions of displacement

x1 = X1 sin ω t

and

x2 = X2 sin ω t

Substituting these expressions into Eqs. 11.29 and 11.30, we obtain an expression for the
relationship between the amplitude displacements⎡⎣1 + k2

k1

−
(

ω

ω1

)2
⎤⎦ X1 −

(
k2

k1

)
X2 = X0 (11.31)
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and

− X1 +
⎡⎣1 −

(
ω

ω2

)2
⎤⎦ X2 = 0 (11.32)

We can then study the system behavior by looking at the expressions for the ratio of the two
amplitudes

X1

X0

=
[
1 − (

ω/ω2

)2
]

⎡⎣1 + k2

k1

−
(

ω

ω1

)2
⎤⎦ ⎡⎣1 −

(
ω

ω2

)2
⎤⎦ − k2

k1

(11.33)

X2

X0

= 1⎡⎣1 + k2

k1

−
(

ω

ω1

)2
⎤⎦ ⎡⎣1 −

(
ω

ω2

)2
⎤⎦ − k2

k1

(11.34)

Now there are two resonant frequencies of the spring mass system, ω1 and ω2. From
Eq. 11.33 we see that when the natural frequency of the second spring mass system matches
the driving frequency of the impressed force, the numerator, and thus the amplitude X1, goes
to zero. At this frequency the amplitude of the second mass is

X2 = − k1

k2
X0 = − F0

k2

(11.35)

where the minus sign indicates that the motion is out of phase with, and just counterbalances,
the driving force. This is the principal behind a second form of vibration isolation known as
mass absorption or mass damping. The absorber mass must be selected so as to match the
applied force, taking into consideration the allowable spring deflection.

Two Damped Oscillators

Figure 11.19 gives the results of an imposed force on a damped two-degree of freedom
spring mass system. The two resonant peaks are at different frequencies, with ω2 > ω1. In
this example there is a relatively narrow frequency range where the second mass provides
appreciable mass damping. Indeed it may generate an unwelcome resonant peak, slightly
above the fundamental frequency of the second mass.

A mass absorber is most effective when it is used to damp the natural resonant frequency
of the first spring mass system. If the ω2 is selected to match ω1, then the two resonant peaks
coincide. When a broadband vibration or an impulsive load is applied to the system, the
zero in the numerator in Eq. 11.33 smothers the resonant peaks and mass damping occurs.
Figure 11.20 illustrates this case.

In long-span floor systems the floor itself acts like a spring mass system. A weight,
suspended by isolator springs below a floor at a point of maximum amplitude, can be used
as a dynamic absorber. These weights, which are usually 1% to 2% of the weight of the
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Figure11.19 Forced Response of a Two Degree of Freedom System (Ruzicka, 1971)

Figure11.20 Forced Response of a Two Degree of Freedom System Near Resonance
(Ruzicka, 1971)
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relevant floor area, are hung between the ceiling and the slab. It is not advisable to use the
ceiling itself as the dynamic absorber, since mass damping works to minimize floor motion
by maximizing the motion of the suspended mass. If the ceiling motion is maximized, it will
radiate a high level of noise at the floor resonance.

Mass absorbers have also been used to damp the natural swaying motion of large towers
such as the CN Tower in Toronto, Canada, using a dynamic pendulum. The double pendulum
is another two degree of freedom system whose behavior is similar to that of a double spring
mass. In this example the tower is encircled with a donut-shaped mass that is suspended as a
pendulum. The mass is located at the point of maximum displacement of the normal modes
of the structure. In the case of tall towers, the second and third modes are usually damped.
The maximum displacement of the first mode occurs at the top of the tower and practical
considerations prevent the suspension of a pendulum from this point. Two donut-shaped
pendulums were used at the 1/3 and 1/2 points of the structure where they counter the second
and third modes of vibration.

11.6 FLOOR VIBRATIONS

The vibration of floors due to motions induced by walking or mechanical equipment can be
a source of complaints in modern building structures, particularly where lightweight con-
struction such as concrete on steel deck, steel joists, or concrete on wood joist construction
is used. Usually the vibration is a transient flexural motion of the floor system in response
to impact loading from human activity (Allen and Swallow, 1975), which can be walking,
jumping, or continuous mechanical excitation. The induced amplitudes are seldom enough
to be of structural consequence; however, in extreme cases they may cause movement in
light fixtures or other suspended items. The effects of floor vibrations are not limited to
receivers located immediately below. With the advent of fitness centers, which feature aer-
obics, induced vibrations can be felt laterally 100 feet away on the same slab as well as up
to 10 stories below (Allen, 1997).

Sensitivity to Steady Floor Vibrations

People, equipment, and sophisticated manufacturing processes, such as computer chip pro-
duction, are sensitive to floor vibrations. The degree of sensitivity varies with the process
and various authors have published recommendations. One of the earliest was documented
by Reiher and Meister (1931) and is shown in Fig. 11.21. These were human responses
determined by standing subjects on a shaker table and subjecting them to continuous ver-
tical motion. Subjects react more vigorously to higher velocities, and for high amplitudes,
awareness increases with frequency. Also shown are the Rausch (1943) limits for machines
and machine foundations and the US Bureau of Mines criteria for structural safety against
damage from blasting.

Sensitivity to Transient Floor Vibrations

Vibrational excitation of floor systems may be steady or transient; however, it is usually
the case that steady sources of vibration can be isolated. Transient vibrations due to footfall
or other impulsive loads are absorbed principally by the damping of the floor. Damping
provides a function somewhat akin to absorption in the control of reverberant sound in a
room. People react, not only to the initial amplitude of the vibration, but also to its duration.
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Figure11.21 Response Spectra for Continuous Vibration (Richart et al., 1970; Reiher
and Meister, 1931)

Investigators use tapping machines, walking at a normal pace (about 2 steps per second),
and a heel drop test, where a subject raises up on his toes and drops his full weight back on
his heels, as impulsive sources. This latter test represents a nearly worst-case scenario for
human induced vibration, with aerobic studios and judo dojos being the exception.

After studying a number of steel-joist concrete-slab structures, Lenzen (1966) suggested
that the original Reiher-Meister scale could be applied to floor systems having less than 5%
of critical damping, if the amplitude scale were increased by a factor of 10. This means that
we are less sensitive to floor vibration when it is sufficiently damped, in this case when only
20% of the initial amplitude remains after five cycles. He further suggested that if a vibration
persists 12 cycles in reaching 20% of the initial amplitude, human response is the same as
to steady vibration. Allen (1974), using his own experimental data along with observations
of Goldman, suggested a series of annoyance thresholds for different levels of damping.
This work, along with that of Allen and Rainer (1976), was adopted as a Canadian National
Standard, which is shown in Fig. 11.22.
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Figure11.22 Annoyance Thresholds for Vibrations (Allen, 1974)

Figure11.23 Impulsive Force

Vibrational Response to an Impulsive Force

When a linear system, such as a spring mass damper, is driven by an impulsive force we
can calculate the overall response. For the study of vibrations in buildings the system of
interest here is a floor and the impulsive force is a footfall generated by someone walking.
An impulse force is one in which the force acts over a very short period of time. An impulse
can be defined as

F̂ =
t + �t∫
t

F dt ∼= F �t (11.36)

Figure 11.23 shows an example of an impulsive force, having a magnitude F and a duration
�t. An impulsive force, such as a hammer blow, can be very large; however, since it occurs
over a rather short period of time, the impulse is finite. When the impulse is normalized to 1
it is called a unit impulse.
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Figure11.24 Response of a Damped System to a Delta Function Impulse F̂
(Thomson, 1965)

Figure 11.24 illustrates the response of a damped spring mass system under an impulse
force for various values of the damping coefficient. From Newton’s law, F �t = m ẋ2− m ẋ1.
When an impulsive force is applied to a mass for a short time the response is a change in
velocity without an appreciable change in displacement. The velocity changes rapidly from
zero to an initial value of F̂ / m. We can use this as the initial boundary condition, assuming
an initial displacement of zero, by plugging into the general undamped solution (Eq. 11.6).
We get the response to the impulse force

x = F̂

m ωn
sin ωn t (11.37)

where ωn is the undamped natural frequency of the spring mass system. If the system is
damped, we can use the same procedure to calculate the response by plugging into Eq. 11.12.

x = F̂

m ωn

√
1 - η2

e− η ωn t sin
(√

1 - η2 ωn t
)

(11.38)

Response to an Arbitrary Force

The impulse response in Eq. 11.38 is a fundamental property of the system. It is given a special
designation, g (t), where x = F̂ g (t). Once the system response to a unit impulse (sometimes
called a delta function) has been determined, it is possible to calculate the response to an
arbitrary force f (t) by integrating (summing) the effects of a series of impulses as illustrated
in Fig. 11.25.

At a particular time τ , the force function has a value, which can be described by an
impulse F̂ = f (τ ) � τ . The contribution of this slice of the force function on the system
response at some elapsed time t − τ after the beginning of that particular pulse is given by

x = f (τ ) �τ g (t − τ) (11.39)

and the response to all the small force pulses is given by integrating over the total time, tp ,
the force is applied. If the time of interest is less than tp, the limit of integration becomes the
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Figure11.25 An Arbitrary Pulse as a Series of Impulses (Thomson, 1965)

time of interest.

x (t) =
tp∫

0

f (τ ) g (t − τ) d τ (11.40)

This integral is known by various names including the Duhamel integral, the summation
integral, and the convolution integral. It says that if we know the system impulse response,
we can obtain the system response for any other type of input by performing the integration.
This has profound implications for the modeling of concert halls and other spaces since the
impulse response of a room can be modeled and the driving force can be music. Thus we can
listen to the sound of a concert hall before it is built.

Response to a Step Function

If the shape of a force applied to a spring mass system consists of a constant force that is
instantaneously applied, we can substitute the force time behavior, f (t) = F0, into Eq. 11.40
along with the system response to obtain the response behavior. For an undamped spring
mass system the result is

x (t) =
t∫

0

F0

m ωn
sin ωn (t − τ) d τ (11.41)

which is

x (t) = F0

k
( 1 − cos ωn t) (11.42)
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Figure11.26 Response of a Damped System to a Unit Step Function (Thomson, 1965)

and for the damped system the result is (see Harris and Crede, 1961; or Thomson, 1965)

x = F0

k

[
1 − e− η ωn t√

1 − η2
cos

(√
1 − η2 ωn t − ψ

)]
(11.43)

where tan ψ = η√
1 − η2

Figure 11.26 shows the system response for a damped spring mass as a function of
damping. When the damping is zero the maximum amplitude is twice the displacement that
the system would experience if the load were applied slowly.

Vibrational Response of a Floor to Footfall

A footstep consists of two step functions, one when the load is applied and one when it is
released. Ungar and White (1979) have modeled this behavior using a versed sine pulse in
Fig. 11.27, and have calculated the envelope for the dynamic amplification, defined as the
ratio of the maximum dynamic amplitude divided by the static deflection obtained under the
load, Fm.

Am = Xmax

Xstatic

=
√

2
(
1 + cos 2 π fn t0

)[
1 − (

2 fn t0
)2

] (11.44)

Figure11.27 Idealized Footstep Force Pulse (Ungar and White, 1979)
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Figure11.28 Maximum Dynamic Deflection Due to a Footstep Pulse (Ungar and
White, 1979)

where fn = 1

2 π

√
k

m
and t0 is the rise time of the pulse. Note that k is the stiffness at the

point where the footstep is taken. This equation does not give us the detailed behavior of the
motion but gives us the envelope of the maximum deflection with resonant frequency, which
is often sufficient for design purposes. For values of fn t0 that are small when compared to
1, the maximum dynamic amplification Am

∼= 2. For large values of fn t0 , the amplification

becomes Am
∼= a /

(
2 fn t0

)2
, where a varies between 0 and 2, so that under these conditions

Am ≤ 1 /
[
2

(
fn t0

)2
]
. Figure 11.28 gives a plot of the upper bound envelope for Am.

In Eq. 11.44 we note that the product fn t0 is equal to t0 / tn , the ratio of the pulse rise time
to the natural period of floor vibration.

Figure 11.29 shows published data on footstep forces generated by a 150 lb (68 kg)
male walker, and Fig. 11.30 shows the dependence of the rise time and force on walking
speed. The figures allow us to estimate the maximum deflection of a floor system for various
values of the resonant floor frequency.

While floors have a multitude of vibrational modes, the fundamental is usually the most
important. It exhibits the lowest resonant frequency, is the most directly excitable structural
motion, and has the softest (lowest impedance) point at its antinode. Some measured results
are shown in Fig. 11.31 for a concrete I-beam structure. Although only two floor modes
have been predicted, and floors are not pure undamped spring mass systems, the curve neatly
bounds the remainder of the modes.

Control of Floor Vibrations

When it is desirable to control floor vibration for human comfort, it is important to limit
the maximum amplitude as well as increase the damping. If the driving force is footfall, we
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Figure11.29 The Footstep Force Pulse Produced by a 150 lb (68 kg) Male Walker
(Ungar and White, 1979)

Figure11.30 Dependence of the Maximum Force F and the Rise Time t of a Footstep
Pulse on the Walking Speed (Ungar and White, 1979)

can use the amplification factor rise time t0 to the natural period tn of the structural mode.
When the pulse rise time is a small fraction of the natural period we might expect a different
behavior than for cases where the rise time is a large multiple of the period. This is illustrated
in Fig. 11.28. From the graph it is reasonable to take the value of fn t0 = 0.5 as the dividing
point between these two regions. From Fig. 11.29, the rise time for a typical rapid walker
is about a tenth of a second, which means that the dividing point corresponds to a floor
resonance of about 5 Hz. The fundamental resonances of most concrete floor systems fall
into the region between 5 and 8 Hz, so that rapid walking on these structures corresponds to
the region where fn t0 ≥ 0.5. For this region,

xmax = Fm / 2 k
(
fn t0

)2 ∼= 2 π2 Fm M / t0
2 k2 (11.45)
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Figure11.31 Footfall Response of a Concrete I-Beam Floor Structure (Ungar and
White, 1979)

and

amax
∼= (

2 π fn
)2

xmax = 2 π2 Fm / = t0
2 k (11.46)

where amax represents the maximum floor acceleration, k the local modal stiffness, and M the
corresponding mass. It is clear that the structural stiffness is the most important component
in decreasing both the maximum amplitude and the maximum acceleration. The floor mass
does not appear in the equation for acceleration. The maximum displacement increases with
mass, unless the mass increases the stiffness.

In the region where fn t0 ≤ 0.5, which would correspond to a very long span floor, we
find that

xmax
∼= Fm / k (11.47)

and

amax
∼= (

2 π fn
)2

xmax = 2 Fm / M (11.48)

Here only the stiffness affects the maximum displacement and only the mass affects the
maximum acceleration.

Allen and Swallow (1974) have addressed the design of concrete floors for vibration
control. It is difficult to change the fundamental resonant frequency. A concrete floor might
weigh 200,000 lbs (91,000 kg) and changing the gross physical properties requires major
structural changes. Damping, however, is a factor that produces significant results and may be
easier to control. These authors make the following preconstruction design considerations:

1. Cross bracing in steel structures has little effect (Moderow, 1970).
2. Noncomposite construction tends to increase damping by 1 to 2% over composite
construction (Moderow, 1970).
3. Concrete added to the lower cord of the structural steel can increase damping of a
completed floor by 2%.
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4. Increasing the thickness of the concrete slab decreases the maximum amplitude and the
natural frequency and increases the damping.
5. Cover plates on the joists increase the natural frequency and decrease amplitudes, due to
the increased stiffness of the floor. When the data are plotted to determine human response it
is found that the change moves downward with frequency, essentially paralleling the human
response curve, so little is gained.

After construction, there are still some therapeutic measures available, principally to increase
damping. Partitions are very effective in adding damping to an existing structure and can
increase the overall damping to 14% of critical. Even lightweight low partitions, planter
boxes, and the like can increase damping to 10% of critical. Partitions may be attached
to a slab either above or below. Damping posts at critical locations can improve damping
somewhat, but they may interfere with the decor. A dynamic absorber can be hung from a
floor and can include a damper as part of the design. Allen and Swallow (1975) report that
a mass damper tuned to 0.9 of the fundamental frequency and with 10% of critical damping
reduced the floor amplitude by 50% and increased floor damping from 3 to 15% of critical.
The added mass was 1 percent of the total floor mass.


