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9.1 TRANSMISSION LOSS

Sound Transmission Between Reverberant Spaces

The transmission of sound from one space to another through a partition is a subject of some
complexity. In the simplest case, there are two rooms separated by a common wall having
area Sw, as in Fig. 9.1. If we have a diffuse sound field in the source room that produces a
sound pressure ps and a corresponding intensity

Is = p2
s

4 ρ0 c0

(9.1)

which is incident on the transmitting surface, a fraction τ of the incident power is transmitted
into the receiving room through the wall

Wr = Is Sw τ = p2
s Sw τ

4 ρ0 c0

(9.2)

where it generates a sound pressure level. If the receiving room is highly reverberant, the
sound field there also will be dominated by the diffuse field component. We use Eq. 8.83 for
the reverberant-field contribution to the energy and obtain the mean square pressure in the
receiving room

p2
r

ρ0 c0

= p2
s Sw τ

Rr ρ0 c0

(9.3)

We can express this as a level by taking 10 log of each side and using the definition of the
transmission loss

� LTL = −10 log τ (9.4)
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Figure 9.1 Laboratory Measurements of the Transmission Loss

we obtain the equation for the transmission of sound between two reverberant spaces

Lr = Ls − �LTL + 10 log

(
Sw

Rr

)
(9.5)

where Lr = spatial average sound pressure level in the receiver room (dB)
Ls = spatial average sound pressure level in the source room (dB)

� LTL = reverberant field transmission loss (dB)
Sw = area of the transmitting surface (m2 or ft2)
Rr = room constant in the receiving room (m2 or ft2 sabins)

Measurement of the Transmission Loss

Under laboratory conditions, both the source and receiving rooms are highly reverberant and
the transmission loss of the common partition is given by

� LTL = Ls − Lr + 10 log Sw − 10 log Rr (9.6)

where the bars over the source and receiver room levels indicate a spatial average in the
reverberant-field portion of the rooms. Formal procedures have been established for labora-
tory (ASTM E90 and ISO 140/III) and field (ASTM E336 and ISO 140/IV) measurements
of the transmission loss of partitions, which establish the partition size, the minimum room
volume, the method of determining of the room constant, and the appropriate measurement
techniques. Loudspeakers are used to generate a sound field in the source room and are
positioned in the corners of the room far enough from the transmitting partition that a diffuse
field is produced. Sound levels are measured at least a distance r ≥ 0.63

√
R from the source

and 1 m (3 ft) from large reflecting surfaces.
Two methods are used for the determination of the room constant. The reverberation

time method measures the value of Rr using the Sabine equation (Eq. 8.72). A second method,
called the source substitution method, uses a calibrated noise source having a known sound
power level to determine Rr by means of Eq. 8.83. The standard source is usually an unhoused
centrifugal fan, which produces a relatively flat noise spectrum.
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Transmission loss measurements are done in third-octave bands over a standard range
of frequencies, from 125 Hz to 4000 Hz. Below 125 Hz, the size of the test room necessary to
achieve the diffuse-field condition becomes large and many labs do not meet this requirement.
Data are sometimes taken below the 125 Hz third-octave band for research or other specialized
purposes. When measured low-frequency data are unavailable, they can be calculated based
on theoretical models. When the room size does not meet the minimum volume requirements
for a diffuse field, the noise reduction is used instead of the transmission loss in standard
tests and a notation to that effect is included in the test report.

Sound Transmission Class (STC)

Although transmission loss data in third-octave or full-octave bands are used for the calcula-
tion of sound transmission between adjacent spaces, it is convenient to have a single-number
rating system to characterize the properties of a construction element. The Sound Transmis-
sion Class is such a system and is calculated in accordance with ASTM E413 and ISO/R 717.
It begins with a plot of the third-octave transmission loss data versus frequency. The three-
segment STC curve, shown in Fig. 9.2, is compared to the measured data by sliding it
vertically until certain criteria are met: 1) no single transmission loss may fall below the
curve by more than 8 dB and 2) the sum of all deficiencies (the difference between the curve
value and the transmission loss falling below it) may not exceed 32 dB. When the curve is
positioned at its highest point consistent with these criteria, as in Fig. 9.3, the STC rating is
the transmission loss value at the point where the curve crosses the 500 Hz frequency line.
The shape of the STC curve is based on a speech spectrum on the source-room side so this
rating system is most useful for evaluating the audibility of conversations, television, and
radio receivers. It is less accurate for low-frequency sounds such as music or industrial noise,
where energy in the bass frequencies may predominate.

Figure 9.2 Reference Contour for Calculating Sound Transmission Class and
Other Ratings
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Figure 9.3 Example of the Reference Contour Fitted to Transmission Loss Data
(STC 25)

Field Sound Transmission Class (FSTC)

Field measurements of the STC can be made in existing buildings and are designated FSTC.
Care must be exercised to minimize flanking, where sound is transmitted by paths other than
directly through the test partition. The FSTC rating is about five points lower than the STC
rating for a given partition, due to flanking and direct-field contributions. It applies only to
the partition on which it is measured, but it can serve as an example of the rating of other
partitions in a group of similarly constructed structures. It is not generally applicable to a
construction type as a laboratory test would be. In building codes, if a given STC rating is
required, an FSTC test that is five points lower is sufficient to demonstrate compliance.

Noise Reduction and Noise Isolation Class (NIC)

The arithmetic difference between the sound pressure levels in adjacent spaces is called the
noise reduction.

�LNR = Ls − Lr (9.7)

At frequencies where rooms do not meet the minimum volume requirements necessary to
establish the required modal density for a diffuse field, the noise reduction is used instead of
the transmission loss to calculate the Sound Transmission Class.

A Noise Isolation Class (NIC) can be calculated from noise reduction values by compar-
ing the measured data to the standard reference contour, using the STC calculation criteria
(ASTM E413). The NIC is measured in the field, since a laboratory measurement would
require knowledge of the transmitting area and the absorption in the receiving room to be
useful. A field NIC rating is not applicable to a type of partition since it relates only to the
unique combination of partition type, partition area, and the amount of absorption present in
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the receiving room at the time of the measurement. Thus, it is not appropriate to assign an
NIC rating to a specific construction element or to use it in place of an FSTC value.

9.2 SINGLE PANEL TRANSMISSION LOSS THEORY

Free Single Panels

When a sound wave strikes a freely suspended solid panel, there is a movement imparted,
which in turn transmits its motion to the air on the opposite side. Figure 9.4 shows the
geometry. The total pressure acting on the panel along its normal is

� p = pi + pr − pt (9.8)

The velocity of a normally reacting panel can be calculated using Newton’s law

� p = ms

d up

d t
= ms ( j ω up) (9.9)

Note that the normal panel impedance in this model, j ω ms, is only due to the panel mass.
If a plane wave approaches at an angle θ to the surface normal and is specularly reflected,

ui = j k cos θ

j ω ρ0

pi = cos θ

ρ0 c0
pi (9.10)

and

ur = − cos θ

ρ0 c0

pr and ut = cos θ

ρ0 c0

pt (9.11)

Substituting Eq. 9.10 and 9.11 into 9.9, we obtain the force balance equation along the normal

ρ0 c0 ui

cos θ
− ρ0 c0 ur

cos θ
= ρ0 c0ut

cos θ
+ ms ( j ω ut) (9.12)

At the surface, the particle velocities on both sides of the plate are the same as the plate
velocity, so

ui + ur = ut = up (9.13)

Figure 9.4 Pressure on a Plate Having a Mass, m, Per Unit Area
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Substituting these into Eq. 9.9 to eliminate the ur term we get the ratio of the transmitted to
incident pressures, which is

pt

pi

= 1

1 + j ω ms cos θ

2 ρ0 c0

= 1

1 + zn cos θ

2ρ0 c0

(9.14)

If we use ζn = zn

ρ0 c0

for the normalized impedance, and define the transmissivity as the

ratio of the transmitted to the incident power, the square of Eq. 9.14

τ
θ

=
[

pt

pi

]2

= 1∣∣∣∣1 + ζn cos θ

2

∣∣∣∣
2 (9.15)

The generalized transmission loss is

� LTL(θ) = 10 log

∣∣∣∣1 + ζn cos θ

2

∣∣∣∣
2

(9.16)

Mass Law

The limp mass approximation for the normalized panel impedance ζn = zn

ρ0c0

∼= j ω ms

ρ0 c0
holds for thin walls or heavy membranes in the low-frequency limit, where the panel acts
as one mass, moving along its normal, and bending stiffness is not a significant contributor.
Using this impedance and recalling that the square of an imaginary number is the sum of the
squares of its real and imaginary parts, we can write the transmissivity as

τ
θ

=
⎡
⎣1 +

(
ω ms cos θ

2 ρ0 c0

)2
⎤
⎦

−1

(9.17)

where τ
θ

= transmissivity or the fraction of the incident energy transmitted through the
panel as a function of incident angle θ

ω = radial frequency (rad / s)
ms = surface mass density (kg / m2 or lbs / ft2)
ρ0 = density of air (1.18 kg / m3 or 0.0745 lbs / ft3)
c0 = speed of sound in air (344 m / s or 1128 ft / s)

By taking 10 log of Eq. 9.17, we obtain the transmission loss of a panel for a plane wave
incident at an angle θ to the normal. A graph of the behavior of the mass law transmission
loss as a function of the angle of incidence of the sound wave is given in Fig. 9.5.

�LTL(θ) = 10 log

⎡
⎣1 +

(
ω ms cos θ

2 ρ0c0

)2
⎤
⎦ (9.18)

For most architectural materials, the normalized mass impedance is much greater than one
so that the term on the right-hand side of the bracket dominates.
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Figure 9.5 Theoretical Sound Transmission Loss of Panels (Beranek, 1971)

When the incident sound field is diffuse, there is an equal probability that sound will come
from any direction. The diffuse incidence transmissivity is obtained by integrating Eq. 9.17
over all angles of incidence up to a limiting value of θMax.

τ =

θMax∫
0

τ
θ

cos θ sin θ d θ

θMax∫
0

cos θ sin θ d θ

(9.19)

The reason for this approach is that the elementary theory of Eq. 9.18 predicts a transmission
loss of zero for grazing incidence, so if the limiting angle is 90◦, we obtain a result that does
not occur in practice. It has become standard procedure to select a maximum angle that yields
the best fit to the measured data. This turns out to be about 78◦, and gives what is known as
the field-incidence transmission loss

�LTL = 10 log

⎡
⎣1 +

(
ω ms

3.6 ρ0c0

)2
⎤
⎦ (9.20)

or

�LTL = 20 log
(
f ms

)− KTL (9.21)
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where �LTL = diffuse field transmission loss (dB)
f = frequency (Hz)

ms = surface mass density of the panel material (kg / m2 or lbs / ft2)

KTL = numerical constant
= 47.3 dB in metric units and 33.5 dB in FP units

Equation 9.21 is known as the mass law since the transmission loss at a given frequency
is only dependent on the surface mass of the panel. The transmission loss increases six dB for
each doubling of surface mass or frequency. Under field-incidence conditions, the integration
over the angle of incidence results in an effective mass that is lower by a factor 1.8 than the
actual mass. Comparing Eq. 9.18 with Eq. 9.20, we see that this is the same as a difference
between the field and normal incidence transmission losses of 5 dB.

� LTL
∼= �LTL (θ = 0) − 5 (9.22)

Figure 9.6 shows a graph of the diffuse field transmission loss measured for a 3-mm (1/8”)
hardboard panel compared with the calculated value. In this frequency range, the agreement
with measured data for thin panels is quite good.

Large Panels—Bending and Shear

Panels that are large compared to a wavelength, react to an applied pressure not only as a
limp mass but also as a plate, which can bend or shear. As such, they have an impedance that
is more complicated than that previously assumed. When the possibility of bending or shear
is present, the two transmission mechanisms act much like resistors in an electric circuit. The
composite panel impedance is treated mathematically like two resistors in parallel, which
are in series with the mass impedance

z ∼= j ω ms + zB zs

zB + zs
(9.23)

Figure 9.6 Transmission Loss of 3 mm (1/8”) Hardboard (Sharp, 1973)
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For an isotropic plate, the bending impedance (Sharp, 1973; Cremer, Heckel, and Ungar,
1973; or Fahy, 1985) is given by

zB
∼= − j ω3 B

c4
0

sin4 θ (9.24)

and the shear impedance (Mindlin, 1951; Cremer, Heckel, and Ungar, 1973; or Beranek and
Ver, 1992) is

zs = −j
G h ω sin2 θ

c2
0

(9.25)

where ω = radial frequency = 2 π f (rad/s)
ms = surface mass density of the panel (kg / m2 or lbs / ft2 )

j = √−1
E = Young’s modulus of elasticity (N / m2 or lb / ft2 )

B = E h3

12 (1 − σ 2)
= bending stiffness (N m or ft lbs)

G = E

2 (1 + σ)
= shear modulus (N / m 2 or lbs / ft2 )

c0 = speed of sound in air (m / s or ft / s)
σ = Poisson’s ratio
h = panel thickness (m or ft)

Thin Panels—Bending Waves and the Coincidence Effect

In Eq. 9.23, the impedance is composed of three imaginary terms: the inertial mass, the
bending stiffness, and the shear impedance. At low frequencies, the mass term predominates;
at high frequencies it is the combination of bending and shear that determines the composite
impedance. Thin panels are easier to bend than to shear, so more of the energy will flow into
this mode. The resulting plate impedance becomes

z ∼= j ω ms − j ω3 B

c4
0

sin4 θ (9.26)

At one frequency, called the coincidence frequency, the mass and bending impedance terms
are equal and, since they have opposite signs, the composite impedance is zero. Figure 9.7
illustrates the crossover point for this condition.

Coincidence can be understood by realizing that the velocity of bending waves in a
panel is a function of frequency. At the coincidence frequency, the bending wave velocity is
the same as the trace velocity of the airborne sound moving along the panel. Since the pressure
maxima and minima are spatially matched, as in Fig. 9.8, energy is easily transmitted from
the air into the panel and vice versa. The frequency at which coincidence occurs varies with
the angle of incidence and is obtained by setting Eq. 9.26 to zero

fco (θ) = c2
0

2 π sin2 θ

√
ms

B
(9.27)
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Figure 9.7 Imaginary Part of the Thin Panel Impedance (Sharp, 1973)

Figure 9.8 Coincidence Effect

For normal incidence, the coincidence frequency is infinite, so there is no effect. The
minimum value of the matching frequency occurs at grazing incidence and is called the
critical frequency.

fc = c2
0

2 π

√
ms

B
= c2

0

2 πh

√
12 (1 − σ 2) ρm

E
(9.28)

where ρm = bulk density of the panel material ( kg / m3 or lbs / ft3 ).
The two frequencies are related by means of

fco (θ) = fc
sin2 θ

(9.29)
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Figure 9.9 Single Panel Direct Field Transmission Loss (Fahy, 1985)

which implies that the coincidence effect always occurs at or above the critical frequency.
Figure 9.9 gives examples in which the position of the coincidence dip varies with the angle
of incidence.

Above coincidence the bending impedance term increasingly dominates and the
transmission loss becomes (Fahy, 1985)

� LTL (θ) ∼= 10 log

⎡
⎣1 +

(
B k4 sin4 θ cos θ

2 ρ0 c0 ω

)2
⎤
⎦ (9.30)

The bending transmission loss is stiffness controlled in this region and has an 18 dB per
octave slope as well as a strong angular dependence.

At the critical frequency, the transmission loss does not fall to zero because internal
damping prevents it. To treat this theoretically, a complex bending stiffness B = B (1 + j η)

is introduced with a damping term η having a value less than one. Since the mass term and
the bending term cancel out at coincidence, damping is left. Using Eq. 9.27, Eq. 9.30 can be
written as an inertial term with a damping coefficient (Fahy, 1985)

� LTL(θ) ∼= 10 log

(
1 + η ωco ms cos θ

2 ρ0 c0

)2

(9.31)

At coincidence, the transmission loss is expressed as the direct-field mass law plus a damping
term 20 log η. Figure 9.9 also shows where internal damping becomes important.

The diffuse-field transmission loss is normally calculated by integrating the direct-
field transmission loss expression over all relevant angles of incidence. The integration
in the coincidence region is difficult because different equations apply, depending on the
angle and the frequency. Although the coincidence frequency varies with angle of incidence,
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the diffuse-field transmission loss still has a minimum at the critical frequency, since the
dominant path is that having the lowest loss.

Several authors have developed approximate relations to use in this region. Fahy (1985)
gives an equation for the transmission loss at the diffuse-field coincidence point, which is
written in terms of a combination of the normal-incidence mass law and a damping term,
dependent on the bandwidth

�LTL (f = fc) ∼= 20 log

(
ωc ms

2 ρ0 c0

)
+ 10 log

{
2 η

π

(
�f

fc

)}
(9.32)

where � f = bandwidth (Hz) - - typically one - third octave or one octave wide
fc = critical frequency (Hz)
η = damping coefficient ( η < 1)

When the transmission loss is calculated just below coincidence, a line is drawn between
the field-incidence mass law value at fc/2 and the critical-frequency transmission loss from
Eq. 9.32. Above the coincidence frequency, Eq. 9.30 predicts an 18 dB per octave increase
in transmission loss for a given angle of incidence. Measured diffuse-field data yield a slope
that is about half that (Sharp, 1973), due to the shifting location of the coincidence dip
with angle. Cremer (1942) has derived an approximate diffuse-field equation for use above
the coincidence frequency that combines the normal-incidence mass law and a frequency-
dependent damping term.

� LTL (f > fc) ∼= 20 log

(
ω ms

2 ρ0 c0

)
+ 10 log

{
2η

π

(
f

fc
− 1

)}
(9.33)

Above coincidence, Eq. 9.33 yields a transmission loss that increases 9 dB per octave for a
single panel, which agrees with measured values.

Table 9.1 and Fig. 9.10 give a compilation of material properties: the product of the
critical frequency and the panel thickness along with the damping coefficients for use in
these equations. Figure 9.11 plots the measured transmission loss for a sheet of 5/8” drywall,
which exhibits a coincidence dip around 2500 Hz. Data calculated from Eqs. 9.32 and 9.33
are also shown.

Thick Panels

As panel thickness increases, the composite panel impedance utilized in thin panel theory is
no longer accurate. At high frequencies a shear wave can develop and propagate in a thick
panel. When shear presents a lower impedance than bending, it will become the predominant
transmission mode. The composite impedance is given by Eq. 9.25.

The crossover point between bending and shear occurs where the thickness of the plate
is equal to a bending wavelength in the plate material. When the panel is thicker than a
wavelength, shear predominates, as illustrated in Fig. 9.12. The shear limiting frequency is
(Sharp, 1973)

fs = c2
0
(1 − σ)

59 h2 fc
(9.34)
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Table 9.1 Product of Plate Thickness and Critical Frequency in Air (20◦ C)
(Beranek, 1971; Cremer et al., 1973; Fahy, 1985)

Material fc h fc
(m sec−1) (ft sec−1)

Steel 12.4 41
Aluminum 12.0 39
Brass 17.8 58
Copper 16.3 54
Glass or Sand 12.7 42
Plaster
Gypsum Board 38 125
Chipboard 23 75
Plywood or Brick 20 66
Asbestos Cement 17 56
Concrete

Dense 19 62
Porous 33 108
Light 34 112

Lead 55 180
Note that variations of 10% are not uncommon.

Figure 9.10 Values of Material Loss Factors (Beranek and Ver 1992)
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Figure 9.11 Transmission Loss of 16 mm (5/8”) Gypboard (Sharp, 1973)

Figure 9.12 Transmission Impedance of Thick Panels (Sharp, 1973)

When the shear frequency falls below the critical frequency, as it can with thick panels
such as concrete slabs and brick or masonry walls, there is no coincidence dip and the shear
mechanism lowers the transmission loss even below that which might be expected from
purely mass law considerations. This can be very important since in Fig. 9.13, it occurs in
the frequency range around 200 Hz for a 15 cm (6”) concrete slab. A good estimate of the
transmission loss can be made above this point by using 6 dB less than the diffuse field mass
law. For concrete or solid brick structures this is equivalent to assuming that there is half the
actual mass.

If the shear frequency is greater than the coincidence frequency, the shear wave
impedance eventually becomes lower than the bending impedance. All materials appear
thick at a high enough frequency. The shear-wave impedance limits the slope of the trans-
mission loss line above the shear-bending frequency to 6 dB per octave. Figure 9.14 gives
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Figure 9.13 Transmission Loss of a 6” Concrete Panel (Sharp, 1973)

Figure 9.14 Imaginary Part of the Transmission Impedance (Sharp, 1973)
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an example. Since coincidence in lightweight construction materials such as sheet metal, gyp-
sum board, or thin wood panels occurs at a relatively high frequency (e.g., above 2000 Hz),
there is little practical impact from shearing effects since there is little sound transmission in
this region.

Finite Panels—Resonance and Stiffness Considerations

For a finite-sized panel, an additional term must be added to the impedance at very low
frequencies, to account for panel bending resonances. This term is given by (Leissa, 1969;
Sharp, 1973)

zP = −j
KP

ω
(9.35)

where

KP = π4 B

[
1

a2
+ 1

b2

]2

(9.36)

and a and b are the dimensions of the panel. In this frequency range, the overall impedance
is the sum of the panel impedance and the mass impedance. When the two terms are equal,
a panel resonant frequency is produced

fP = π

2

√
B

ms

[
1

a2
+ 1

b2

]
(9.37)

Typically, the dimensions of a panel such as a wall are large enough that the panel resonance
is quite low, on the order of 10 Hz or less. A 2 m × 3 m sheet of gypboard, for example, has
a panel resonance of about 5 Hz. Note that Eq. 9.37 is based on the fundamental resonant
frequency of the panel. There are also higher panel modes; however, due to damping these
rarely contribute to the transmission loss. The frequency appears in the denominator in
Eq. 9.35, so below the panel resonance the transmission loss increases with decreasing
frequency at 6 dB per octave. Sharp (1973) has given an approximate relationship for this
region.

� LTL
∼= 20 log (f ms) − KTL + 40 log

(
fP
f

)
(9.38)

for f < fP the lowest panel resonance frequency.

Design of Single Panels

For single panels the transmission loss is influenced by four factors: 1) size, 2) stiffness,
3) mass, and 4) damping. Josse and Lamure (1964) have developed a comprehensive,
albeit somewhat more complex, formulation for the region below the critical frequency
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that includes all four components

� LTL = 20 log

(
ω ms

2 ρ0 c0

)
− 10 log

{[
3

2
+ ln

(
2 ω

� ω

)]
(9.39)

+16 c2
0

η ωc

1(
ω ωc

)1/2

(
a2 + b2

a2 b2

)[
1 + 2 ω

ωc
+ 3

(
ω

ωc

)2
]}

For typical panel sizes, in the mass-law region Eq. 9.39 gives about the same result as Eq. 9.21.
Above the critical frequency, Eq. 9.32 or Eq. 9.33 can be used to predict the transmission
loss. For thick panels, the mass law holds up to the point where shear predominates. Above
this point, mass law less 6 dB gives a good estimate.

The transmission loss of a thin panel falls into five frequency regions illustrated in
Fig. 9.15. At very low frequencies the transmission loss is stiffness controlled. The greater
the bending stiffness and the shorter the span, the higher the transmission loss. These con-
siderations become important in low-frequency sound transmission problems in long-span
floor structures, particularly in lightweight wood construction, where the bending stiffness
of the structure is not great. Although floors are a composite structure, they can be thought
of as a single bending element at these low frequencies.

Above the fundamental panel mode, the transmission loss of a thin single panel is
primarily a function of its mass. Techniques such as mass loading can be used to increase
the intrinsic panel mass, by adding asphalt roofing paper, built-up roofing, sand, gravel,
lightweight concrete, gypboard, or discrete masses. Lead-loaded gypsum board panels are
available for critical applications. Mass loading increases the weight of the panel without
increasing the panel stiffness. Loading materials need not cover the entire panel but can be
located at regular intervals over the surface. In existing wooden floor structures mass can
be added by screwing sheets of gypboard to the underside of wood subfloors between the

Figure 9.15 General Form of the Diffuse Field Transmission Loss vs Frequency
Curve for a Thin Panel
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joists, a technique that also helps close off any cracks in the subflooring. Although a high
mass is desirable, a high thickness is not, due to its effect on the coincidence frequency. For
example, 9 mm (3/8”) glass has a higher STC rating (STC 34) than a normal 44 mm (1 3/4”)
solid core door (STC 30) even though it weighs less per unit area, due to the fact that its
coincidence frequency is much higher.

In the region around coincidence, damping controls the depth of the notch. Several
techniques can be used to increase the transmission loss. In windows and glazed doors,
a resin interlayer of 0.7 to 1.4 mm (30 to 60 mils) thickness can be introduced between
two layers of glass to increase damping. Products of this type are called laminated glass or
sometimes acoustical glass. Sheets of 6 mm (1/4 in) laminated glass make good acoustical
windows and can achieve an STC rating of 34 in fixed stops or high-quality frames.

Damping compounds are also commercially available. Products come in sheet or paste
form and add both mass and damping. They are primarily used to treat thin materials such
as sheet-metal panels on vibrating equipment. Asphalt materials such as undercoat on car
bodies serve the same function and reduce the vibration amplitudes of these surfaces.

Spot Laminating

Spot laminating is a technique used to increase transmission loss near coincidence. In this
region, it is important not to thicken the panel, which decreases the critical frequency. If the
mass is increased through the addition of an extra layer, it may decrease the transmission
loss in the frequency range of interest. One way to achieve a combination of high mass and
low stiffness is to laminate panels together using dabs (spots) of panel adhesive at regular
intervals. At low frequencies, the panels act as one and their composite bending stiffness is
greatly increased. At high frequencies the shearing effect of the adhesive acts to reduce the
bending stiffness to that of an individual panel. The panels act individually and the critical
frequency remains high, since it is that of a single panel in bending.

When using the spot laminating technique the spacing of the adhesive dots determines
the frequency at which the two panels begin to decouple. Decoupling begins when the dot
spacing is equal to the wavelength of bending waves. The bending wavelength of a single
panel at a frequency f is given by (Sharp, 1973) as

λB = c0√
f fc

(9.40)

At low frequencies, the critical frequency is that of the composite panel since the bending
wavelength is much greater than the spacing of the adhesive. If two panels of identical
materials are joined together, the coincidence frequency of each sheet is about twice that of
the composite. The decoupling frequency can be written as

fd = 2 c2
0

a2 fc
(9.41)

where a is the adhesive spacing and fc is the critical frequency of a single sheet of material.
If the two panels are 1/2” gypboard, which has a coincidence frequency of about 3000 Hz,
and the adhesive dot spacing is 24”, then the decoupling frequency is 210 Hz. This is well
below the composite panel’s coincidence frequency, which would be about 1500 Hz.
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9.3 DOUBLE-PANEL TRANSMISSION LOSS THEORY

Free Double Panels

The transmission loss of a double panel system is based on a theory that first considers
panels of infinite extent, not structurally connected, and subsequently addresses the effects
of various types of attachments. The treatment here follows that first developed by London
(1950) and later by Sharp (1973). It is assumed that the air cavity is filled with batt insulation,
which damps the wave motion parallel to the wall, so we are mainly concerned with internal
wave motion normal to the surface. The airspace separating the panels acts as a spring and
at a given frequency, a mass-air-mass resonance occurs. The resonance is the same as that
given in Eq. 7.103, which was developed in the discussion of air-backed panel absorbers, but
the mass has been modified to account for the diffuse field and for the fact that both panels
can move

f0 = 1

2π

√
3.6 ρ0 c2

0

m′ d
(9.42)

where m′ = 2 m1 m2

m1 + m2

= effective mass per unit area of the

construction (kg / m2 or lbs / ft2)
d = panel spacing (m or ft)

For a double panel wall, consisting of 16 mm (5/8”) gypboard separated by a stud space
of 9 cm (3.5”), the mass-air-mass resonance occurs at about 66 Hz. At low frequencies,
below the resonant frequency, the two panels act as one mass. If the individual panels are
mass controlled then the transmission loss follows the mass law of the composite structure.

At frequencies above the mass-air-mass resonance, the effect of the air cavity is to
increase the transmission loss significantly. In fact for N separate panels, the ideal theoretical
transmission loss increases 6(2N-1) dB per octave. At high frequencies, constructions having
multiple panels with intervening air spaces can provide significant increases in transmission
loss over that achieved by a single panel. Since it is rarely practical to construct walls or floors
with more than about three panels, consideration of large numbers of panels is generally not
useful.

A plane wave encountering a double-panel system sees the impedance of the nearest
panel, the impedance of the airspace, the impedance of the second panel, and finally the
impedance of the air beyond. The transmissivity has been given by London (1950) as

τ
θ

=
[
1 + (X1 + X2

)+ X1 X2

(
1 − e−j σ

)]−2
(9.43)

where X = zn cos θ

2 ρ0 c0
zn = normal impedance of a panel (rayls)
σ = 2 k d cos θ

k = 2 π f

c0

= wave number (m−1)

Below the critical frequency the panel impedance is equal to its mass reactance and, for a
diffuse field, the transmission loss of an ideal double panel system of infinite extent, attached
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only through the air spring coupling, is

�LTL
∼= 10 log

⎧⎨
⎩1 +

[
ω M

3.6 ρ0 c0

− ω2 m1 m2(
3.6 ρ0 c0

)2
(
1 − e−2 j k d

)]2
⎫⎬
⎭ (9.44)

where m = mass per unit area of an individual panel (kg/m2)
M = total mass per unit area of the construction (kg/m2)

At low frequencies, below the mass-air-mass resonance, the panel spacing is small
compared with a wavelength so the rightmost term in Eq. 9.44 approaches zero and the
transmission loss can be approximated by

� LTL
∼= 10 log

⎧⎨
⎩1 +

[
ω M

3.6 ρ0 c0

]2
⎫⎬
⎭ (9.45)

which is just the mass law for the composite panel.

�LTL
∼= 20 log (f M) − KTL f < f0 (9.46)

At frequencies above f0, but still below the point where the wavelength is comparable to
the panel separation, the rightmost term in Eq. 9.44 begins to dominate. In this region the
wavelength is still larger than the panel spacing, so (2 k d) is small and e−2 j k d ∼= 1 − 2 j k d.
The transmission loss can be approximated by

�LTL
∼= 20 log

[
ω2 m1 m2(
3.6 ρ0 c0

)2 2 k d

]
(9.47)

which can be written as

�LTL
∼= � LTL1 + � LTL2 + 20 log (2 k d) f0 > f > f

�
(9.48)

where � LTL1 and � LTL2 are the mass law transmission losses for each panel. Each term
in Eq. 9.48 increases 6 dB per octave so the overall transmission loss rises 18 dB per octave
in this frequency range. It also increases 6 dB for each doubling of the separation distance
between the panels. At still higher frequencies resonant modes can be sustained in the airspace
between the panels and there arises a series of closed tube resonances, normal to the surfaces,
having frequencies

fn = n c0

2 d
for n = 1, 2, 3 . . . (9.49)

These aid in the transfer of sound energy between the panels and result in a series of dips
in the double-panel transmission loss, shown in Fig. 9.16. Due to the damping provided by
batt insulation, we usually do not see this pattern in actual transmission loss measurements,
which are carried out in third-octave bands. Batt flattens out the slope of the transmission
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Figure 9.16 Theoretical Transmission Loss of an Ideal Double Panel (Sharp, 1973)

loss curve from 18 dB/octave down to 12 dB/octave in this region. The transmission loss
behavior above a limiting frequency is given by

�LTL
∼= � LTL1 + � LTL2 + 6 f

�
< f (9.50)

The crossover frequency, which can be obtained by setting Eq. 9.48 equal to Eq. 9.50, is
equal to the first cavity resonance frequency divided by π .

fl = c0

2 πd
= f1

π
(9.51)

Equations 9.46, 9.48, and 9.50 give the transmission loss of an ideal double panel system
in three frequency ranges separated by the frequencies in Eqs. 9.42 and 9.51. Measurements
by Sharp (1973) have shown that there is good agreement between theoretical and measured
data for both the mass-reactance region (Fig. 9.17) and the critical region (Fig. 9.18). The
panel transmission loss values in the critical region were used instead of simple mass law
predictions.

Cavity Insulation

The theory that has been developed here has assumed that the air cavity is well damped.
When there is no absorptive material between the panels, cavity resonances contribute to
the transmission of sound from one side to the other in much the same way as a mechanical
coupling would. The addition of damping material such as fiberglass batt insulation attenuates
these modes. Figure 9.19 (Sharp, 1973) shows the effects of a fully isolated double-panel
system, with and without batt insulation. The panels used were 1/4” and 1/8” hardboard so
that the coincidence frequencies were above the frequency range of interest. Below the first
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Figure 9.17 Measured and Calculated Transmission Loss Values for a Separated
Double Panel (Sharp, 1973)

Figure 9.18 Transmission Loss Values for a Separated Double Panel Including
Coincidence (Sharp, 1973)
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Figure 9.19 Transmission Loss of an Isolated Double Panel Construction with and
without Insulation (Sharp, 1973)

cavity resonance (1100 Hz), the panels are so coupled by the cavity resonances that the
transmission loss follows the mass law. Above the first resonance, the phase varies over
the depth of the cavity and the coupling is weaker. When 2” insulation is introduced into
the cavity the wall begins to act like a double-panel system. With 4” of insulation, the mass
of the insulation is comparable to that of the panel and transmission losses are greater than
those predicted using simple theory.

Table 9.2 shows measured increases in STC values for various thicknesses of insula-
tion between separately supported 16-mm (5/8”) gypboard wall panels. The effectiveness of
batt insulation in a wall cavity is almost entirely dependent on its thickness. The density of
the fill for a given thickness makes only a small difference at relatively high frequencies,
above 1000 Hz. The presence of paper backing on the fiberglass makes no difference for
gypboard partitions, nor does the position of the partial thickness within the cavity, includ-
ing contact with either side. Weaving a blanket of insulation around staggered studs is no
more effective than the simpler method of placing the batt vertically between the studs. The

Table 9.2 Measured Effects of Fiberglass Batt in Completely Separated Double
Panel Walls (Owens Corning Fiberglass, 1970)

Thickness of Cavity Fill Average Increase in STC (dB)

1 1/2” 10
2” 11
3” 12
4” 13
6” 15
8” 16
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Figure 9.20 Transmission Loss of an Isolated Double Panel Construction with
Perimeter Insulation (Sharp, 1973)

effectiveness of insulation in staggered stud and single stud walls is much less than in ideal
walls due to the high degree of mechanical coupling between the two sides. Improvements in
real (with studs, etc.) walls of from 3 to 7 dB were obtained, with insulation thicknesses of 2
to 6 inches. For most walls and floor-ceilings, where the two sides are mechanically coupled
together in some way, the addition of batt insulation increases the STC from 3 to 5 dB for
the first three inches of material and about a dB per inch above that point. Thicknesses of
batt insulation beyond the stud spacing are not helpful since the compressed batt can form a
structural bridge between the panels.

Higher order cavity modes, which are not necessarily perpendicular to the panels, can
contribute to the sound transmission in the mid and high frequencies. Therefore, absorptive
material is quite effective even if it is placed only around the perimeter of the cavity. This
is a common technique used in the construction of double-glazed sound-rated windows for
studios. Figure 9.20 illustrates the effect of insulation placed only around the perimeter of
the cavity. At low frequencies, the transmission loss increases with the thickness of the
insulation. In studio window construction it is helpful to leave an opening into the wall
cavity, which acts as a Helmholtz resonator absorber, tuned to the mass-air-mass resonance
frequency.

Double-Panel Design Techniques

At frequencies below the mass-air-mass (m-a-m) resonance, a double-panel wall acts as a
single unit and the stiffness and mass are the most important contributors to transmission
loss. Above the m-a-m resonance, both mass and panel spacing are important as shown in
Fig. 9.21. Equation 9.47 holds that, for a given total mass, the transmission loss is greatest if
the mass is distributed equally on both sides of the wall. This is generally true although it is
a commonly held belief that unbalanced construction is preferred because of the desirability
of mismatching the critical frequencies of the panels. Recent studies (Uris et al., 2000) have
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Figure 9.21 Effect of Mass and Spacing on Transmission Loss Ideal Double Panel
Construction (Sharp, 1973)

shown that, for a given mass, there is little difference between balanced and unbalanced
gypsum board wall constructions, even at coincidence. The coincidence effect can be con-
trolled by adding damping or by using different thicknesses of gypboard, while maintaining
an overall equality of mass on each side (Green and Sherry, 1982).

Because of the m-a-m resonance, a certain minimum air space is necessary before
double-panel construction becomes significantly better than a single panel. Figure 9.22 shows
a series of transmission loss tests (Vinokur, 1996) for single-glazed and various configurations
of dual-glazed windows. The large dip at about 700 Hz for curve 6 corresponds to the m-a-m
resonant frequency. Curves 2 and 4 illustrate the effects of mechanical coupling through
direct connection between the window frames. Bridging provides a short circuit across the
main air gap and magnifies the importance of the coincidence effects.

Additional tests by Vinokur using 3 mm (1/8”) laminated and plate glass are summarized
in Fig. 9.23. An STC of 34 was achieved with the two sheets of glass laminated together, and
this result was not bettered for double-glazed windows until the airspace exceeded 25 mm
(1”). The lesson here is that not all double-glazed windows are better than single-glazed even
when the total overall thickness of glass is the same. When the spacing between panels is
small, it is not uncommon to find that a double-panel construction has a lower transmission
loss than that of the two individual single panels sandwiched together. This accounts for
the failure of thin double-panel windows, sometimes referred to as thermopane windows, to
provide appreciable noise reduction.

In the region around coincidence, panels may be deadened using a sandwiched damping
compound. In the Vinokur tests, glass panels were laminated together using 0.7 or 1.4 mm
thick polyvinylbutyral. The coincidence dip for a laminated panel (curve 6) is significantly
smaller than for single (curve 5) or double (curve 2) plate glass, where there is structural
bridging. Harris (1992) reports that a sandwiched viscoelastic layer contained between two
layers of 5/8” plywood can improve the transmission loss of lightweight wood floor systems.
Gluing plywood floor sheathing can also be helpful.

Increasing the spacing between the partitions drives down the m-a-m resonance fre-
quency and increases the transmission loss above that point. Measured window data show
that above a spacing of about 20 mm the improvement is about 3.5 STC points per doubling
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Figure 9.22 Transmission Loss of Various Glazing Configurations (Vinokur, 1996)

of distance between the panes and about the same increase per doubling of mass. Figure 9.24
gives laboratory data taken by Quirt (1982) for various thicknesses and spacings of window
glazing. The upward trend for both mass and spacing is clear.

In the case of gypboard panels, the coincidence frequency can be kept high by using
multiple sheets of differing thicknesses that are spot laminated together. In other cases,
panels can be designed so that the coincidence frequency is greater than the frequency range
of interest. Where thick panels such as concrete slabs or grouted concrete masonry units are
used, an additional separately supported panel of gypsum board can be used to offset the
low shear frequency of the concrete with a high coincidence frequency in the gypboard. In
the coincidence region, the ideal mismatch is on the order of a factor of two; however, more
modest ratios can provide several dB of benefit.

The coincidence effect is emphasized, perhaps overemphasized, by the STC test pro-
cedure since the knee in the standard STC curve falls at about half the critical frequency
of 16-mm (5/8”) drywall. Due to this fact double walls with single 13 mm (1/2”) gypboard
often test higher than 16 mm (5/8”) gypboard and 10 mm (3/8”) higher than 13 mm (1/2”)
(California Office of Noise Control, 1981). For a given mass of panel the thinner material
is more effective due to the higher critical frequency. A higher STC value in these cases
does not necessarily mean that a given construction is more effective at reducing noise, since
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Figure 9.23 Transmission Loss Tests on Laminated and Double Glazed Windows
(Vinokur, 1996)

noise reduction depends on the source spectrum. At low frequencies, the heavier panels are
more effective regardless of their STC rating.

There is a common misunderstanding, particularly in the design of windows in sound
studios, that the slanting of one of the panes of glass with respect to the other provides
some acoustical benefit. The mass-air-mass resonance is a bulk effect and is shifted only
slightly by the use of a slanted panel. A careful study of window design effects, undertaken
by Quirt (1982), showed that slanting had no appreciable effect on the transmission loss of
double pane windows. However the technique of slanting one sheet of glass in studio control
room windows is useful in reducing the ghost images from light reflections between the
panes.

The introduction into the airspace of a gas such as argon, carbon dioxide, or SF6, which
have a sound velocity lower than that of air, has much the same effect as batt insulation in
the cavity. Gasses that have a higher velocity than air, such as helium, can also be effective.
These gasses are used in hermetically sealed dual-paned windows. The mismatch in velocity
reduces the coincidence effect since, when the interior wave matches the bending velocity,
the exterior wave does not.
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Figure 9.24 STC vs Interpane Spacing for Separately Supported Double Glazing
(Quirt, 1982)

9.4 TRIPLE-PANEL TRANSMISSION LOSS THEORY

Free Triple Panels

The impedance of ideal triple panels, with no mechanical connections, can be calculated in
a similar fashion to that used to obtain the double panel result. The system is pictured in
Fig. 9.25. It consists of three masses and two air springs and is a two-degree of freedom
system. As such it has two resonant frequencies given by the equation (Vinokur, 1996)

f
α,β

= 1

2 π

√
3.6 ρ0 c2

0

√
a ±

√
a2 − b

(
f
β

> fα

)
(9.52)

where a = 1

2 m2

(
m1 + m2

m1 d1

+ m2 + m3

m3 d2

)

b = M

m1 m2 m3 d1 d2

Figure 9.25 General Model of a Triple Panel System
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mi = mass of the i th panel (kg / m2 or lbs / ft2)
dj = spacing of the j th air gap between the layers (m or ft)

M = m1 + m2 + m3

The resulting transmission loss can be simplified (Sharp,1973) to provide approximations,
which fall into three frequency ranges

� LTL
∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

20 log (M f ) − KTL f < fα

� LTL1 + � LTL2 + � LTL3 + 20 log (2 k d1) + 20 log (2 k d2)

f
β

< f < fl
� LTL1 + � LTL2 + � LTL3 + 12 fl > f

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.53)

Below the lower mass-air-mass resonance, the triple-panel construction reverts to mass-
law behavior. Above the higher mass-air-mass resonance, but lower than the lowest cavity
resonance divided by π (as defined by Eq. 9.51), the transmission loss increases at a rate of
30 dB per octave compared with 18 dB per octave for the double panel. In this frequency
range the transmission loss is increased 18 dB per doubling of mass.

Comparison of Double and Triple-Panel Partitions

It is useful to compare the behavior of double- and triple-panel walls, which are available for
the construction of critical separations such as those found in sound studios and high-quality
residential construction. At low frequencies, below f0, the mass law applies to both types
of construction, so for a given mass and thickness the performance is the same. Figure 9.26
shows a graph of the transmission loss achieved by the two types. Here the triple panel has
a symmetric construction with the center panel having twice the mass of the outer panels
and equal air spaces on either side. For this configuration, the lowest mass-air-mass resonant
frequency, fα , is twice that of the double construction frequency f0. The two transmission

Figure 9.26 Double and Triple Panel �LTL Comparison (Sharp, 1973)
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loss curves cross at a frequency that is four times f0. Thus, assuming no connections between
the panels, the double panel system is better below 4f0 and the triple panel is better above
4f0. For a wall consisting of one layer of 16 mm (5/8”) gypboard on the outer panels and
two layers on the inside, separated by two 90 mm (3.5”) airspaces, the crossover point 4f0 is
about 260 Hz.

In general, walls with double panels are more efficient for the isolation of music,
where bass is the main concern, and triple panels for the isolation of speech. Triple panels,
however, are more forgiving of poor construction practice, such as improperly isolated
electrical boxes and noisy plumbing, since they provide an additional layer in the middle
of the wall or floor. These practical effects in many cases may be more important than a
theoretically higher transmission loss.

For a given total mass and thickness, triple-glazed windows are not as effective as
double glazing, since the separation between panes in triple-glazed windows is not large. They
are most effective when the heaviest sheet of glass is an outer layer and not in the center, and
when the airspace dimensions are not the same. Figure 9.27 illustrates this point through a
series of tests carried out by Vinokur (1996). Example 2 shows the effect of the transposition
of position of the heavy and light sheets of glass. Example 3 shows that it is effective to
closely space the two light panes of glass even when the larger airspace does not increase.
This configuration acts more like a double-glazed unit. At the higher frequencies, the primary
transmission path in windows is from pane to pane through the edge connections at the
frame.

Figure 9.27 Measurements of Triple Panel Glass Units (Vinokur, 1996)
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9.5 STRUCTURAL CONNECTIONS

Point and Line Connections

In the previous theoretical analysis, it has been assumed that there were no structural con-
nections linking the panels, in either the double or the triple constructions. The only means
of connection between the panels was through the coupling provided by the air space. In
actual building construction, there are studs, joists, and other elements that provide the
structural support system and physically connect panels together. These produce a parallel
means of sound transmission, by way of mechanical connections from one panel to another.
In general there are two types of connections: a line connection, such as that provided by
wood or metal studs, which touch the panels continuously along their length; and a point
connection, in which the contact is made over a relatively small area that approximates a
point.

The theory published by Sharp (1973) for the transmission of sound through mechan-
ical connections assumes that the power transmitted by the panel on the receiving side is
proportional to the square of the velocity of the panel and to its radiating area. It further
assumes that, in the local area around the connection, the panel velocity on the receiving
side is the same as on the sending side, and that the sending side panel is unaffected by
the presence of the receiving side panel. He develops the equivalent radiating area for point
and line connections, since these areas act as localized sources, which transmit energy in
addition to that transmitted by the air-gap transmission path. The bridging energy trans-
mitted is proportional to the transmitting area, which decreases with frequency since its
effective radius is about one-quarter of the bending wavelength. The power radiated by this
area, however, increases with frequency so that the total bridging energy transmitted stays
constant.

The effect of sound bridges in double-panel construction is shown in Fig. 9.28. The
normal double-panel transmission loss is truncated by the extra energy transmitted through
the solid connections above the bridging frequency. The limiting value of the transmission

Figure 9.28 Transmission Loss of a Double Panel with Structural Bridges
(Sharp, 1973)
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loss above the composite mass law is given for point connections (Sharp, 1973)

� LBP = 20 log
(
e fc
)+ 20 log

(
m1

m1 + m2

)
− KBP (9.54)

and for line connections

� LBL = 20 log
(
b fc
)+ 20 log

(
m1

m1 + m2

)
− KBL (9.55)

where e = point lattice spacing (m or ft)
b = line stud separation (m or ft)

m1 = mass per unit area of the panel (kg / m2 or lb / ft2)
m2 = mass per unit area on the side supported by point or line

connections (kg / m2 or lb / ft2)
fc = critical frequency of the panel supported by point

connections or, in the case of line connections, the higher
critical frequency of the two panels (Hz)

KBP = constant for point connections
= − 44.7 for metric units
= − 55 for FP units

KBL = constant for line connections
= − 22.8 for metric units
= − 28 for FP units

The bridging frequency for point connections is

fBP = f0

(
e

λc

)1/2

(9.56)

and for line connections

fBL = f0

(
π b

8 λc

)1/4

(9.57)

Note that e2 = the area associated with each point connection (m2 or ft2)
f0 = fundamental resonance of the double panel (Hz)

The overall transmission loss for a bridged double panel is given by

� LTL
∼=

⎧⎪⎪⎨
⎪⎪⎩

20 log (M f ) − KTL f < f0

� LTL1 + � LTL2 + 20 log (2 k d) f0 < f < fB

20 log (M f ) − KTL + � LB fB < f < 0.5fc

⎫⎪⎪⎬
⎪⎪⎭ (9.58)
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Figure 9.29 �LTL for a Point Mounted Double Panel Sharp (1973)

Figure 9.29 shows the results of measurements of bridged double panels done by Sharp
(1973). The figure illustrates that there is little advantage to mounting both sides on point
connections. Note that Eq. 9.58 does not account for the behavior at the critical frequency
where the energy is transmitted by an airborne path. At the critical frequency, the various
connection methods yield the same results.

When making a comparison between theoretical and laboratory transmission loss
data, calculated data yield a higher result. Better agreement is obtained by assuming line
bridging at a spacing based on edge connections for the panel area specified in the test
standard.

Transmission Loss of Apertures

The sound transmission through apertures has been treated in some detail. Wilson and Soroka
(1965) utilize an approach that analyzes a normally incident plane wave falling on a circular
opening of radius a and depth h. They assume massless rigid pistons of negligible thickness at
the entrance and exit of the aperture, which simulate the air motion. The radiation impedance
is assumed to be that of a rigid piston in a baffle discussed in Chapt. 6. The transmission
coefficient is

τ = 4 wr

{
4 w2

r (cos k h − xr sin k h)2+[
(w2

r − x2
r + 1) sin k h + 2 xr cos k h

]2
}−1

(9.59)

where wr and xr are the resistive and reactive components of the mechanical radiation
impedance of the piston radiator from Eq. 6.65. The real and imaginary parts are given in
Eqs. 6.66 and 6.68.
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Figure 9.30 Transmission Loss through a 1” (25 mm) Diameter
4”(100 mm) Long Hole (Gibbs and Balilah, 1989)

Figure 9.31 Transmission Loss through a Circular Aperture vs Frequency for
Various h/a Ratios (Wilson and Soroka, 1965)

Apertures in enclosures can create Helmholtz resonator cavities, which increase
the noise emitted from a source housed within them in much the same way that bass-
reflex enclosures are used with cone loudspeakers to augment the low-frequency response.
Figure 9.30 (Gibbs and Balilah, 1989) plots the theoretical and measured transmission loss
of a 1” (25 mm) diameter hole having a 4” (100 mm) length. At low frequencies there is
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about a 16 dB (theoretical) loss in this example, which drops sharply at the first open-open
tube resonance. The transmission loss is negative in the vicinity of the tube resonant fre-
quencies and gradually goes to zero as the wavelength approaches the hole diameter. Similar
results were obtained by Sauter and Soroka (1970) for rectangular apertures. The loss at low
frequencies depends on the ratio of the depth, h, to the hole radius, a. Figure 9.31 illustrates
this effect.
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