
A1.1 Introduction

Structures are devices for conducting forces
from the points where they originate in
buildings to foundations where they are
ultimately resisted. They contain force systems
which are in a state of static equilibrium. An
appreciation of the concepts of force,
equilibrium and the elementary properties of
force systems is therefore fundamental to the
understanding of structures.

A1.2 Force vectors and resultants

Force is a vector quantity which means that
both its magnitude and its direction must be
specified in order to describe it fully. It can be
represented graphically by a line, called a
vector, which is drawn parallel to its direction
and whose length is proportional to its

magnitude (Fig. A1.1). When two or more non-
parallel forces act together, their combined
effect is equivalent to that of a single force
which is called the resultant of the original
forces. The magnitude and direction of the
resultant can be found graphically by vector
addition in a ‘triangle of forces’ or a ‘polygon
of forces’ (Fig. A1.2). In this type of addition
the resultant is always represented, in both
magnitude and direction, by the line which is
required to close the ‘triangle of forces’ or
‘polygon of forces’.
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Fig. A1.1 Force is a vector quantity and can be
represented by a line whose length is proportional to its
direction and whose direction is parallel to its direction.

Fig. A1.2 Vector addition: the
triangle and polygon of forces. (a) A
body acted upon by two forces. (b)
Vector addition produces a triangle of
forces which yields the resultant. (c)
The resultant has the same effect on
the body as the original forces, and is
therefore exactly equivalent to them.
(d) A body acted upon by three forces.
(e) Vector addition produces a
polygon of forces which yields the
resultant. (f) The resultant has the
same effect on the body as the
original group of forces.

(a) (b) (c)

(d) (e) (f)



A1.3 Resolution of a force into
components

Single forces can be subdivided into parts by
reversing the process described above and
considering them to be the resultant of two or
more components (Fig. A1.3). The technique is
called the resolution of the force into its
components and it is useful because it allows
force systems to be simplified into two sets of
forces acting in orthogonal directions (i.e. two
perpendicular directions). It also allows the
addition of forces to be carried out
algebraically rather than graphically. The
resultant of the set of forces in Fig. A1.2, for
example, is easily calculated if each of the
forces is first resolved into its horizontal and
vertical components (Fig. A1.4).

A1.4 Moments of forces

Forces exert a turning effect, called a moment,
about points which are not on their line of
action. The magnitude of this is equal to the
product of the magnitude of the force and the
perpendicular distance between its line of
action and the point about which the turning
effect occurs (Fig. A1.5).

A1.5 Static equilibrium and the
equations of equilibrium

Structures are rigid bodies which are acted
upon by external forces called loads. Their
response to these depends on the
characteristics of the force system. If the
structure is acted upon by no force it may be
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Fig. A1.3 Resolution of a
force into components. (a) A
single force. (b) A triangle of
forces used to determine the
vertical and horizontal
components of the single force:
v = F sin �; h = F cos �. (c) The
vertical and horizontal
components are exactly
equivalent to the original force.

Fig. A1.4 Use of resolution of
forces into components to
determine the resultant of a set
of forces. (a) Three concurrent
forces. (b) Resolution of the
forces into vertical and
horizontal components. (c)
Determination of the resultant
by vector addition of the
components.

Fig. A1.5 The moment of a
force about a point is simply a
measure of the turning effect
which it exerts about that point.

(a)

(a) (b) (c)

(b) (c)



regarded as being in a state of rest. If it is
acted upon by a single force, or by a group of
forces which has a resultant, it moves, (more
precisely it accelerates) under their action (Fig.
A1.6). The direction of the movement is the

same as that of the line of action of the single
force or resultant and the rate of acceleration
is dependent on the relationship between the
mass of the structure and the magnitude of the
force. If the structure is acted upon by a group
of forces which has no resultant, that is a
group of forces whose ‘triangle of forces’ or
‘polygon of forces’ is a closed figure, it may
remain at rest and a state of static equilibrium
is said to exist. This is the condition which is
required of the force systems which act on real
structures although, as will be seen below, the
need for the force system to have no resultant

is a necessary but not a sufficient condition for
equilibrium.

The loads which act on real structures rarely
constitute an equilibrium set by themselves
but equilibrium is established by reacting
forces which act between the structures and
their foundations. These reacting forces are in
fact generated by the loads which tend to
move the structure against the resisting effect
of the supports. The relationship which exists
between the loading forces which act on a
structure and the reacting forces which these
produce at its foundations is demonstrated
here in a very simple example, which is
illustrated in Fig. A1.7.

The example is concerned with the
equilibrium or otherwise of a rigid body which
is situated on a frictionless surface (a block of
wood on a sheet of ice might be a practical
example of this). In Fig. A1.7(a), a force (load)
is applied to the body and, because the body is
resting on a frictionless surface and no
opposing force is possible, it moves in
response to the force. In Fig. A1.7(b) the body
encounters resistance in the form of an
immovable object and as it is pushed against
the object a reaction is generated whose
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Fig. A1.6 If a body is acted upon by a
force it will accelerate along the line of
action of the force. The magnitude of the
acceleration depends on the relationship
between the mass of the body and the
magnitude of the force (Newton’s Second
Law of Motion).
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Fig. A1.7 Reacting forces are passive as they occur only
as a result of other forces acting on objects. They are
generated at locations where resistance is offered to the
movement of the object. Equilibrium will occur only if the
disposition of resistance points is such that the acting
forces together with the reactions form a closed force
polygon and exert no net turning effect on the object. The
latter condition is satisfied if the sum of the moments of
the forces about any point in their plane is zero. (a) A body
accelerating under the action of a force. (b) Acceleration
stopped and equilibrium established due to the presence
of an immovable object on the line of action of the force.
This generates a reaction which is equal and opposite to
the acting force. Note the very simple ‘polygon’ of forces
which the vector addition of the acting force and reaction
produces. (c) Equilibrium is not established if the
immovable object does not lie on the line of action of the
force F, even though the polygon of forces produces no
resultant. The latter means that translational motion will
not occur but rotation is still possible. (d) A second
immovable object restores equilibrium by producing a
second reacting force. Note that the magnitude and
direction of the original reaction are now different but the
force polygon is still a closed figure with no resultant.

(a) (b)

(c) (d)



magnitude increases as the pressure on the
object increases until it is equal to that of the
acting force. The reaction then balances the
system and equilibrium is established.

In this case, because the object providing the
resistance happened to lie on the line of action
of the acting force, one source of resistance only
was required to bring about equilibrium. If the
object had not been in the line of action of the
force as in Fig. A1.7(c), the reaction would
together still have been developed, but the
resultant and the reaction would have produced
a turning effect which would have rotated the
body. A second resisting object would then have
been required to produce a second reaction to
establish equilibrium (Fig. A1.7(d)). The
existence of the new reaction would cause the
magnitude of the original reaction to change,
but the total force system would nevertheless
continue to have no resultant, as can be seen
from the force polygon, and would therefore be
capable of reaching equilibrium. Because, in
this case, the forces produce no net turning
effect on the body, as well as no net force, a
state of equilibrium would exist.

The simple system shown in Fig. A1.7
demonstrates a number of features which are
possessed by the force systems which act on
architectural structures (Fig. A1.8). The first is
the function of the foundations of a structure
which is to allow the development of such
reacting forces as are necessary to balance the
acting forces (i.e. the loads). Every structure
must be supported by a foundation system
which is capable of producing a sufficient
number of reactions to balance the loading
forces. The precise nature of the reactions
which are developed depends on the
characteristics of the loading system and on
the types of supports which are provided; the
reactions change if the loads acting on the
structure change. If the structure is to be in
equilibrium under all possible combinations of
load, it must be supported by a foundation
system which will allow the necessary
reactions to be developed at the supports
under all the load conditions.

The second feature which is demonstrated
by the simple system in Fig. A1.7 is the set of

conditions which must be satisfied by a force
system if it is to be in a state of static
equilibrium. In fact there are just two
conditions; the force system must have no
resultant in any direction and the forces must
exert no net turning effect on the structure.
The first of these is satisfied if the components
of the forces balance (sum to zero) when they
are resolved in any two directions and the
second is satisfied if the sum of the moments
of the forces about any point in their plane is
zero. It is normal to check for the equilibrium
of a force system algebraically by resolving the
forces into two orthogonal directions (usually
the vertical and horizontal directions) and the
conditions for equilibrium in a two-
dimensional system can therefore be
summarised by the following three equations:

The sum of the vertical components of all of
the forces = 0

• Fv = 0

The sum of the horizontal components of all
of the forces = 0

• Fh = 0

The sum of the moments of all of the forces
= 0

• M = 0 131
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Fig. A1.8 Loads and
reactions on an
architectural structure.



The two conditions for static equilibrium in a
co-planar force system are the physical basis of
all elementary structural calculations and the
three equations of equilibrium which are
derived from them are the fundamental
relationships on which all of the elementary
methods of structural analysis are based.

A1.6 The ‘free-body-diagram’

In the analysis of structures, the equations
which summarise the conditions for
equilibrium are used in conjunction with the
concept of the ‘free-body-diagram’ to calculate
the magnitudes of the forces which are present
in structures. A ‘free-body-diagram’ is simply a
diagram of a rigid object, the ‘free body’, on
which all the forces which act on the body are
marked. The ‘free body’ might be a whole
structure or part of a structure and if, as it
must be, it is in a state of equilibrium, the
forces which act on it must satisfy the
conditions for equilibrium. The equations of
equilibrium can therefore be written for the
forces which are present in the diagram and
can be solved for any of the forces whose
magnitudes are not known. For example, the
three equations of equilibrium for the structure
illustrated in Fig. A1.9 are:

Vertical equilibrium:
R1 + R2 = 10 + 10 + 5 (1)

Horizontal equilibrium:
R3 – 20 = 0 (2)

Rotational equilibrium (taking moments
about the left support):

10�2 + 10�4 + 5�6 – 20�1 – R2�8 = 0
(3)

The solutions to these are:

from equation (3), R2 = 8.75 kN

from equation (2), R3 = 20 kN

from equation (1), by substituting for R2,
R1 = 16.25 kN

A1.7 The ‘imaginary cut’ technique

The ‘imaginary cut’ is a device for exposing
internal forces as forces which are external to a
free body which is part of the structure. This
renders them accessible for analysis. In its
simplest form this technique consists of
imagining that the structural element is cut
through at the point where the internal forces
are to be determined and that one of the
resulting two parts of it is removed. If this were
done to a real structure the remaining part
would, of course, collapse, but in this
technique it is imagined that such forces as are
necessary to maintain the remaining part in
equilibrium in its original position, are applied
to the face of the cut (Fig. A1.10). It is reasoned
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Fig. A1.9 Free-body-diagram of a roof truss.

Fig. A1.10 The investigation of internal forces in a
simple beam using the device of the ‘imaginary cut’. The
cut produces a free-body-diagram from which the nature of
the internal forces at a single cross-section can be
deduced. The internal forces at other cross-sections can be
determined from similar diagrams produced by cuts made
in appropriate places.



that these forces must be exactly equivalent to
the internal forces which acted on that cross-
section in the structure before the cut was
made and the device of the imaginary cut
therefore makes the internal forces accessible
for equilibrium analysis by exposing them as
forces which are external to a part of the
structure. They then appear in the ‘free-body-
diagram’ (see Section A1.6) of that part of the
structure and can be calculated from the
equations of equilibrium.

In the analysis of large structural
arrangements the device of the ‘imaginary cut’
is used in several stages. The structure is first
subdivided into individual elements (beams,
columns, etc.) for which free-body-diagrams
are drawn and the forces which pass between
the elements are calculated from these. Each
element is then further sub-divided by
‘imaginary cuts’ so that the internal forces at
each cross-section can be determined. The
procedure is summarised in Fig. 2.18.
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