Lecture 13

CONCRETE WORKS

TSP-308 MPK

Ferdinand Fassa

Concrete works

- Concrete is a man-made (rock) construction material, which is a mixture of portland cement, water, aggregates, and in some cases, admixtures.
- The cement and water form a paste that hardens and bonds the aggregates together.
- Can be placed or molded into virtually any shape and reproduce any surface texture.
- Concrete is strong, durable, versatile, and economical.

Concrete works

- Concrete will not warp or undergo change in dimensions
- When properly designed and placed it is nearly impermeable and extremely resistant to corrosion
- Has good resistance to natural and processing chemicals
- Economical but requires significant quality control

process

The overall Quality of Finished Product depends on:

- Quality of raw material
- Quality of handling material and/or products
- Quality of workmanship

PROBLEMS in CONCRETE WORKS:

- ☑ Bad materials
- ☑ Improper batching, mixing, handling, transporting
- **⊠** Improper formwork
- ☑ Improper curing and finishing

Make sure all things are taken care of according to recommended practices and codes

INSPECTION, INSPECTION, INSPECTION, INSPECTION ... !

Types of Portland cement

Cement type	Use		
l1	General purpose cement, when there are no extenuating conditions		
 2	Aids in providing moderate resistance to sulfate attack		
- 111	When high-early strength is required		
IV ³	When a low heat of hydration is desired (in massive concrete structures)		
V4	When high sulfate resistance is required		
IA ⁴	A type I cement containing an integral air-entraining agent		
IIA4	A type II cement containing an integral air-entraining agent		
IIIA ⁴	A type III cement containing an integral air-entraining agent		

Concreting Techniques

- Regular/common Concreting Techniques
 - Pouring concrete into ready-made formwork (in-situ)
 - Beams, columns, slabs, façades, foundations, etc.
- Special Concreting Techniques:
 - Precast Concrete:
 - On-site Production
 - Off-site Production
 - Slipform Construction (Traveling Formwork)
 - Vertical slipforming
 - Horizontal slipforming
 - Tilt-Up Construction
 - Lift-Slab Construction
 - Shotcrete Construction
 - Balloon construction
 - Prepacked Aggregate

Design and Construction Considerations

- Regular Formwork
 - Vertical loads and lateral concrete pressures
 - Dimensions & tolerances
 - Curing, finishing and stripping
 - o Shoring
- Precast concrete
 - Joint system (wet vs. dry)
 - Transportation and handling loads
- Vertical Slipforming
 - Jacking system (hydraulics)
 - Slipforming operation
- Horizontal Slipforming
 - $\circ~$ Lining and slopes

Concrete Mixing Plant

Batching and Mixing

Transporting & Delivery of Concrete

ready-mix / agitator truck

mobile concrete pump

Shotcreting

Shotcreting

	Dry-Mix	Wet-Mix	
Dry ingred into a hop pneumatic of a nozzle Water is a	dient are placed per then cally pumped out e. dded at the nozzle	Concrete compound (cement, fine aggregate) and water are mixed in a hopper, then pumped out of a nozzle.	
Good for small and repair works		Best for work in large volume	
Quantity of controlled	of water is t the nozzle	Less dusty, less rebound, less waste	
	WATER INTRODUCED TO MATERIAL (VIA WATER RING)	<text></text>	concrete pumping hopper

Tilt Up Construction

Tilt-Up Construction?

- 1. First, the slabs of concrete are cast on-site either using the building's floor as a casting surface or using horizontal casting beds.
- 2. After curing, the slabs are lifted or tilted into place with a crane and set on concrete foundations to form the building exterior.
- 3. The load-bearing panels are temporarily braced, building steel is erected, and the panels and framework are connected.
- 4. The roof structure is constructed and anchored to the walls to complete the building system.
- 5. Following removal of panel braces, grout is applied at the base of the panels and all vertical joints are caulked

Tilt-Up Construction Process

The Up Construction

Lift-Slab Construction

 Slabs are poured on ground then lifted sequentially one by one onto their final position by means of a jacking system

At the final positions the slabs are fixed to the columns

Lift Slab Construction Process

Tilt-up construction process

Tilt-up construction process

Tilt-up construction process

Lift Slab Construction Process

Lift Slab can be Dangerous Construction Process Progressive collapsed of L'Ambiance Plaza

Heavy Lifting Construction Process

hydraulic jack for lifting

Balloon Construction \rightarrow DOMES

Balloon Construction → DOMES

Design and Construction Considerations

- Traveling Forms
 - Traveling speed
 - Symmetrical loading
- Tilt-Up Construction
 - Lifting process (balancing)
 - Temporary shoring
- Lift-Slab Construction
 - Slab separation
 - Lifting and supporting system (vertical & horizontal alignment)
- Shotcrete
 - Consistency of flows
 - Dry vs. wet mix

Prestressed Concrete

Important issues in Precast concrete

- Structural efficiency
- Flexibility in use
- Optimum use of materials
- Speed of construction
- Quality consciousness
- Adaptability
- Protection of the environment

Prestressed concrete

Improve (loading) capacity of structural element

Professor Gustav Mangel from the University of Ghent in Belgium described the concept of pre-compressed concrete to his students using his well-known illustration of a stack of books...

Prestressed concrete

• Improve (loading) capacity of structural element

Pretensioning

The combination of high strength steel – to resist tensile stress – and concrete – to provide compressive strength and durability – make this composite material adaptable to many situations, especially the design and construction of bridges.

Precasting plants and in-plant pretensioning...

Single to 7-write strands...

Anchorage System

Anchorage System

Post-tensioning for segmental bridge construction

• Integrating (structural) elements

Post-tensioning for segmental bridge construction

PRECAST CONCRETE ELEMENTS

TRANSPORTATION OF PRECAST CONCRETE ELEMENTS

FABRICATION OF PRECAST CONCRETE

ERECTION OF PRECAST CONCRETE PIERS AND GIRDERS

Bridge precast concrete

Bridge precast concrete

Bridge precast concrete

Concrete safety practices

- Protruding steel bars
 must be covered
- Improper loading of wet concrete

