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Pertemuan – 6, 7 

Multi Degree of Freedom System 
Free Vibration 

Mata Kuliah : Dinamika Struktur & Pengantar Rekayasa Kegempaan 

Kode  : TSP – 302 

SKS  : 3 SKS 
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 TIU : 
 Mahasiswa dapat menjelaskan tentang teori dinamika struktur. 

 Mahasiswa dapat membuat model matematik dari masalah teknis yang 
ada serta mencari solusinya. 

 

 

 TIK : 
 Mahasiswa mampu mendefinisikan derajat kebebasan, membangun 

persamaan gerak sistem MDOF 
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 Sub Pokok Bahasan : 

 Penentuan derajat kebebasan 

 Properti matrik kekakuan, massa dan redaman 
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 Structures cannot always be described by a SDoF 
model 

 In fact, structures are continuous systems and as such 
possess an infinite number of DoF 

 There are analytical methods to describe the 
dynamic behavior of continuous structures, which 
are rather complex and require considerable 
mathematical analysis. 

 For practical purposes to study Multi Degree of 
Freedom System (MDoF), we shall consider the 
multistory shear bulding model. 
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 A shear building may be defined as a structure in which there 
is no rotation of a horizontal section at the level of the floors 

 Assumption for shear building 

 The total mass of the structure is concentrated at the 
levels of the floors 

 The slabs/girders on the floors are infinitely rigid as 
compared to the columns 

 The deformation of the structure is independent of the 
axial forces present in the columns 
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 By equating to zero the sum of the forces acting on each 
mass : 

 

 

 

 

 Eq. (1) may conveniently be written in matrix notation as : 
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 Where : 

 

 

 And : 
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Natural Frequencies and Normal Modes 
 EoM for MDoF system in free vibration is : 

 

 

 Solution of Eq. (3) is : 

 

 

 The substitution of Eq. (4) into Eq. (3) gives : 

 

       0 uKuM  (3) 

        tsinBtcosAtqu nnnnnnn   (4) 
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 The formulation of Eq (5) is known as an eigenvalue problem. 

 To indicate the formal solution to Eq. (5), it is rewritten as : 

 

 

 Eq (6) has non trivial solution if : 

 

 

 Eq.(7) gives a polynomial equation of degree n in n
2, known 

as characteristic equation of the system 

 

 

 

       0
2  nn MK  (6) 

A vibrating system with n DoF has n natural vibration frequencies n, arranged in 
sequence from smallest to largest 

    0K
2  Mn (7) 
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 The n roots of Eq. (7) determine the n natural frequencies n 
of vibration. 

 These roots of the characteristic equation are also known as 
eigenvalues 

 When a natural frequency n is known,  Eq.(6) can be solved 
for the corresponding vector n 

 There are n independent vectors , which are known as 
natural modes of vibration, or natural mode shape of 
vibration 

 These vectors are also known as eigenvector. 
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Example 1 

 Determine : 

1. The natural frequencies and 
corresponding modal shapes 
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Modal & Spectral Matrices 
 The N eigenvalues, N natural frequencies, and n natural 

modes can be assembled compactly into matrices 
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Orthogonality of Modes 
 The natural modes corresponding to different natural 

frequencies can be shown to satisfy the following 
orthogonality conditions : 
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Free Vibration Response : Undamped System 

 EoM for MDoF Undamped Free Vibration is : 

 

 

 The differential equation (8) to be solved had led to the 
matrix eigenvalue problem of Eq.(6). 

 The general solution of Eq. (8) is given by a superposition of 
the response in individual modes given by Eq. (4). 

 

 

 Or  
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 Premultiply Eq. (10) with {n}
T[M] : 

 

 

 

 Regarding the orthogonality conditions : 

 

 From which : 
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 If Eq. (8) is premultiplied by the transpose of the nth mode-
shape vector {n}

T, and using Eq.(10) with its second 
derivative it becomes : 

 

 

 

 

 Eq.(11) is an EoM from SDoF Undamped System for mode n, 
which has solution : 
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 Solution for Eq. (8) becomes : 

 

 

 

 

 The procedure described above can be used to obtain an 
independent SDoF equation for each mode of vibration of 
the undamped structure. 

 This procedure is called the mode-superposition method 
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Example 2 

 Based on data from Example 1, and the 
following initial condition, for each DoF plot 
the time history of displacement, regarding 
the 1st, and 2nd mode contribution. 
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Free Vibration Response : Damped System 

 EoM for MDoF Damped Free Vibration is : 

 

 

 Using Eq. (10) and its derivative : 

 

 

 Premultiply Eq. (15) with {}T : 
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 Eq.(16) is an EoM from SDoF Damped System for mode n, 
which has solution : 

 

 

 The displacement response of the system is then obtained by 
substituting Eq. (17) in Eq. (10) 
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