Managerial Economics in a Global Economy, 5th Edition by Dominick Salvatore

Chapter 13 Risk Analysis

Risk and Uncertainty

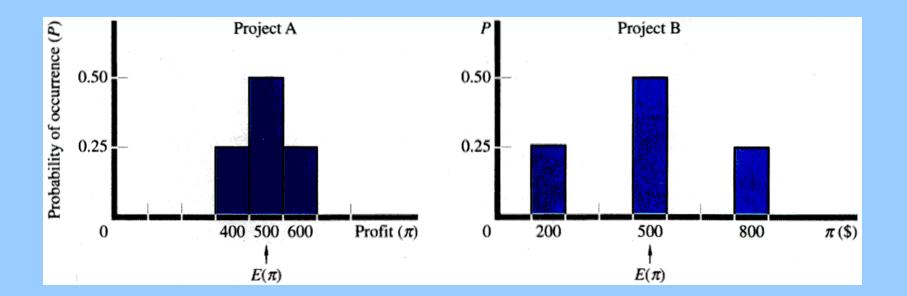
Risk

- Situation where there is more than one possible outcome to a decision and the probability of each outcome is known
- Uncertainty
 - Situation where there is more than one possible outcome to a decision and the probability of each outcome is unknown

- Probability
 - Chance that an event will occur
- Probability Distribution
 - List of all possible events and the probability that each will occur
- Expected Value or Expected Profit

$$E(\pi) = \overline{\pi} = \sum_{i=1}^{n} \pi_i \cdot P_i$$

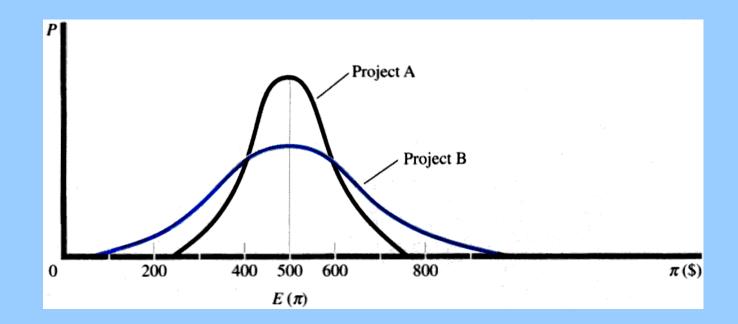
Measuring Risk Probability Distributions Calculation of Expected Profit


	State of	Probability	Outcome	Expected
Project	Economy	(P)	(π)	Value
	Boom	0.25	\$600	\$150
A	Normal	0.50	500	250
A	Recession	0.25	400	100
	Expected	\$500		
	Boom	0.25	\$800	\$200
В	Normal	0.50	500	250
	Recession	0.25	200	50
	Expected profit from Project B			\$500

- Discrete Probability Distribution
 - List of individual events and their probabilities
 - Represented by a bar chart or histogram
- Continuous Probability Distribution
 - Continuous range of events and their probabilities
 - Represented by a smooth curve

Discrete Probability Distributions

Project A; $E(\pi) = 500$, Low Risk


Project B: $E(\pi) = 500$, High Risk

Continuous Probability Distributions

Project A: $E(\pi) = 500$, Low Risk

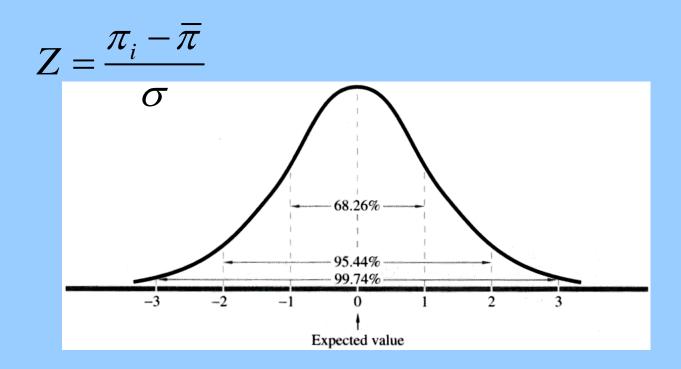
Project B: $E(\pi) = 500$, High Risk

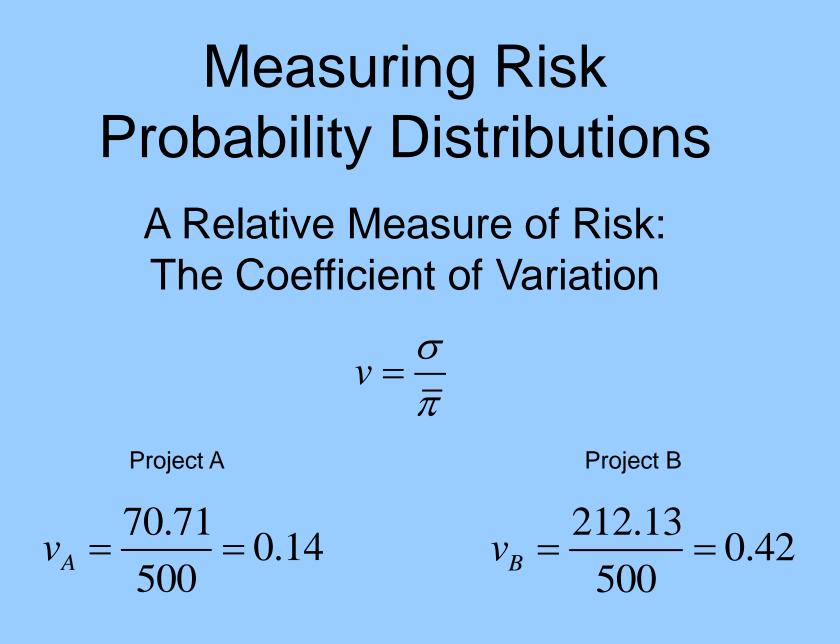
An Absolute Measure of Risk: The Standard Deviation

$$\sigma = \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \cdot P_i}$$

Calculation of the Standard Deviation Project A

$$\sigma = \sqrt{(600 - 500)^2 (0.25) + (500 - 500)^2 (0.50) + (400 - 500)^2 (0.25)}$$

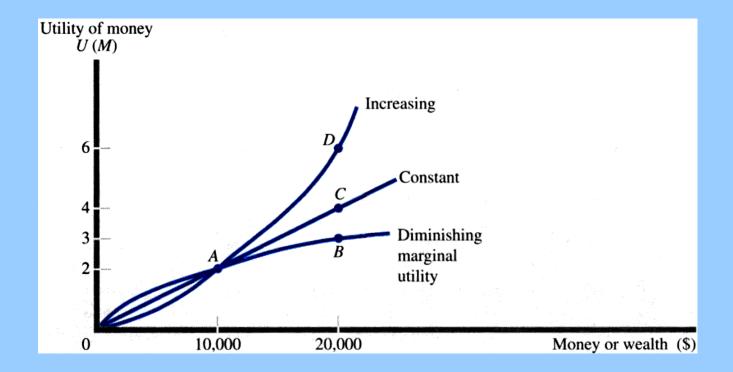

$$\sigma = \sqrt{5,000} = \$70.71$$


Calculation of the Standard Deviation Project B

$$\sigma = \sqrt{(800 - 500)^2 (0.25) + (500 - 500)^2 (0.50) + (200 - 500)^2 (0.25)}$$

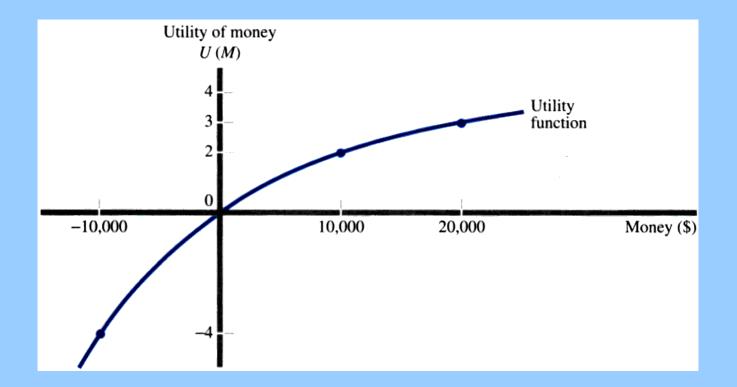
$$\sigma = \sqrt{45,000} = \$212.13$$

The Normal Distribution



Prepared by Robert F. Brooker, Ph.D. Copyright ©2004 by South-Western, a division of Thomson Learning. All rights reserved.

Utility Theory


- Risk Averse
 - Must be compensated for taking on risk
 - Diminishing marginal utility of money
- Risk Neutral
 - Are indifferent to risk
 - Constant marginal utility of money
- Risk Seeking
 - Prefer to take on risk
 - Increasing marginal utility of money

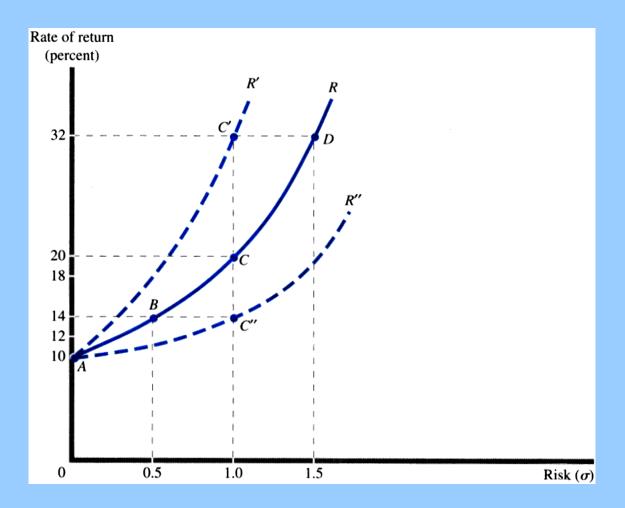
Utility Theory

Utility Theory

Utility Function of a Risk Averse Manager

Adjusting Value for Risk

Value of the Firm = Net Present Value


$$NPV = \sum_{t=1}^{n} \frac{\pi_t}{\left(1+r\right)^t}$$

Risk-Adjusted Discount Rate

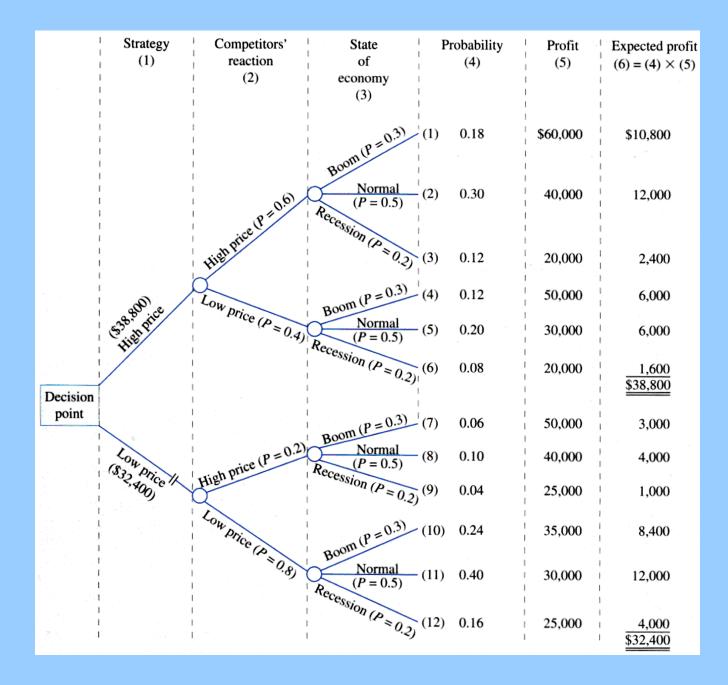
k = r + Risk Premium

$$NPV = \sum_{t=1}^{n} \frac{\pi_t}{\left(1+k\right)^t}$$

Adjusting Value for Risk

Adjusting Value for Risk

Certainty Equivalent Approach


$$NPV = \sum_{t=1}^{n} \frac{\alpha R_t}{\left(1+r\right)^t}$$

Certainty Equivalent Coefficient

$$\alpha = \frac{equivalent\ certain\ sum}{expected\ risky\ sum} = \frac{R_t^*}{R_t}$$

Other Techniques

- Decision Trees
 - Sequence of possible managerial decisions and their expected outcomes
 - Conditional probabilities
- Simulation
 - Sensitivity analysis

Uncertainty

- Maximin Criterion
 - Determine worst possible outcome for each strategy
 - Select the strategy that yields the best of the worst outcomes

Uncertainty: Maximin

The payoff matrix below shows the payoffs from two states of nature and two strategies.

	State of		
Strategy	Success	Failure	Maximin
Invest	20,000	-10,000	-10,000
Do Not Invest	0	0	0

Uncertainty: Maximin

The payoff matrix below shows the payoffs from two states of nature and two strategies.

For the strategy "Invest" the worst outcome is a loss of 10,000. For the strategy "Do Not Invest" the worst outcome is 0. The maximin strategy is the best of the two worst outcomes - Do Not Invest.

	State of		
Strategy	Success	Failure	Maximin
Invest	20,000	-10,000	-10,000
Do Not Invest	0	0	0

Uncertainty: Minimax Regret

The payoff matrix below shows the payoffs from two states of nature and two strategies.

	State of Nature		
Strategy	Success	Failure	
Invest	20,000	-10,000	
Do Not Invest	0	0	

Uncertainty: Minimax Regret

The regret matrix represents the difference between the a given strategy and the payoff of the best strategy under the same state of nature.

	State of	Nature	Regret Matrix		
Strategy	Success Failure		Success	Failure	
Invest	20,000	-10,000	0	10,000	
Do Not Invest	0	0	20,000	0	

Uncertainty: Minimax Regret

For each strategy, the maximum regret is identified. The minimax regret strategy is the one that results in the minimum value of the maximum regret.

	State of Nature		Regret Matrix		Maximum
Strategy	Success	Failure	Success	Failure	Regret
Invest	20,000	-10,000	0	10,000	10,000
Do Not Invest	0	0	20,000	0	20,000

Uncertainty: Informal Methods

- Gather Additional Information
- Request the Opinion of an Authority
- Control the Business Environment
- Diversification

Foreign-Exchange Risk

- Foreign-Exchange Rate
 - Price of a unit of a foreign currency in terms of domestic currency
- Hedging
 - Covering foreign exchange risk
 - Typically uses forward currency contracts

Foreign-Exchange Risk

- Forward Contract
 - Agreement to purchase or sell a specific amount of a foreign currency at a rate specified today for delivery at a specified future date.
- Futures Contract
 - Standardized, and more liquid, type of forward contract for predetermined quantities of the currency and selected calendar dates.

Information and Risk

- Asymmetric Information
 - Situation in which one party to a transaction has less information than the other with regard to the quality of a good
- Adverse Selection
 - Problem that arises from asymmetric information
 - Low-quality goods drive high-quality goods out of the market

Information and Risk

- Moral Hazard
 - Tendency for the probability of loss to increase when the loss is insured
- Methods of Reducing Moral Hazard
 - Specifying precautions as a condition for obtaining insurance
 - Coinsurance