Managerial Economics in a Global Economy, 5th Edition by Dominick Salvatore

Chapter 6 Production Theory and Estimation

The Organization of Production

- Inputs
 - Labor, Capital, Land
- Fixed Inputs
- Variable Inputs
- Short Run
 - At least one input is fixed
- Long Run
 - All inputs are variable

Production Function With Two Inputs Q = f(L, K)

Slide 3

Production Function With Two Inputs

Discrete Production Surface

Production Function With Two Inputs Continuous Production Surface

Production Function					
With One V	ariable Input				
Total Product	TP = Q = f(L)				
Marginal Product	$MP_{L} = \frac{\Delta TP}{\Delta L}$				
Average Product	$AP_L = \frac{TP}{L}$				
Production or Output Elasticity	$E_{L} = \frac{MP_{L}}{AP_{L}}$				

Production Function With One Variable Input

Total, Marginal, and Average Product of Labor, and Output Elasticity

L	Q	MP_L	APL	EL
0	0	-	-	-
1	3	3	3	1
2	8	5	4	1.25
3	12	4	4	1
4	14	2	3.5	0.57
5	14	0	2.8	0
6	12	-2	2	-1

Production Function With One Variable Input

Slide 8

Production Function With One Variable Input

Slide 9

Optimal Use of the Variable Input

Marginal Revenue Product of Labor

 $MRP_{L} = (MP_{L})(MR)$

Marginal Resource N Cost of Labor

 $\mathsf{MRC}_{\mathsf{L}} = \frac{\Delta \mathsf{TC}}{\Delta \mathsf{L}}$

Optimal Use of Labor $MRP_{L} = MRC_{L}$

Optimal Use of the Variable Input

Use of Labor is Optimal When L = 3.50

L	MP_L	MR = P	MRP_{L}	MRC_{L}
2.50	4	\$10	\$40	\$20
3.00	3	10	30	20
3.50	2	10	20	20
4.00	1	10	10	20
4.50	0	10	0	20

Optimal Use of the Variable Input

<u>Isoquants</u> show combinations of two inputs that can produce the same level of output.

Firms will only use combinations of two inputs that are in the <u>economic region of</u> <u>production</u>, which is defined by the portion of each isoquant that is negatively sloped.

Marginal Rate of Technical Substitution

 $MRTS = -\Delta K / \Delta L = MP_L / MP_K$

Production With Two Variable Inputs MRTS = -(-2.5/1) = 2.5

Perfect Substitutes Perfect Complements

<u>Isocost lines</u> represent all combinations of two inputs that a firm can purchase with the same total cost.

$$C = wL + rK$$
 $C = Total Cost$

w = Wage Rate of Labor(L)

$$K = \frac{C}{r} - \frac{W}{r}L$$

$$r = Cost of Capital(K)$$

MRTS = w/r

Effect of a Change in Input Prices

Returns to Scale

Production Function Q = f(L, K)

 $\lambda Q = f(hL, hK)$

If $\lambda = h$, then f has constant returns to scale. If $\lambda > h$, then f has increasing returns to scale. If $\lambda < h$, the f has decreasing returns to scale.

Returns to Scale

Constant Returns to Scale

Increasing Returns to Scale

Decreasing Returns to Scale

Empirical Production Functions

Cobb-Douglas Production Function $Q = AK^aL^b$

Estimated using Natural Logarithms In Q = In A + a In K + b In L

Innovations and Global Competitiveness

- Product Innovation
- Process Innovation
- Product Cycle Model
- Just-In-Time Production System
- Competitive Benchmarking
- Computer-Aided Design (CAD)
- Computer-Aided Manufacturing (CAM)