a home base to excellence

Universitas

Pembangunan Jaya

Mata Kuliah	$:$ Statika
Kode	$:$ CVL - 104
SKS	$: 3$ SKS

Representasi Gaya Dalam
 Pada Struktur balok sederhana

Pertemuan-5 \& 6

a home base to excellence

- TIU :
- Mahasiswa dapat menghitung gaya-gaya dalam momen, lintang dan normal pada struktur statis tertentu
- TIK :
- Mahasiswa dapat menganalisis gaya dalam momen, lintang dan netral pada struktur balok sederhana

a home base to excellence

- Sub Pokok Bahasan :
- Gaya dalam momen
- Gaya dalam Lintang
- Gaya dalam Normal

a home base to excellence

What are the Internal Loads used for ?

To determine the forces and moment that act within it.
Normal Stresses are determined by the bending moment
Shear stresses are determined by the maximum shear force and the maximum torsional moments

Internal loads can be determined by using Cross section Method

From left side

From right side
internal loadings

a home base to excellence

Internal Loading for Coplanar structure will consist :

- Normal/Axial Force (N)
- Shear Force (V / D)
- Bending Moment (M)

a home base to excellence

Universitas

Pembangunan Jaya

Normal /Axial Force

The algebraic sum of the components acting parallel to the axis of the beam of all the loads and reactions applied to the portion of the beam on either side of that cross section

a home base to excellence

Shear Force?

The algebraic sum of the components acting transverse to the axis of the beam of all the loads and reactions applied to the portion of the beam on either side of that cross section

a home base to excellence

Bending Moment

The algebraic sum of the moments, taken about an axis (which is normal to the plane of loading), passing through the centroid of the cross section of all the loads and reactions applied to the portion of the beam on either side of that cross section.

a home base to excellence

- Example 1

Determine the internal normal force, shear force and bending moment acting at point C in the beam.

a home base to excellence

Shear and Moment Functions

- The design of a beam requires a detailed knowledge of the variations of the internal shear force V and moment M acting at each point along the axis of the beam.
- The variations of V and M as a function of the position x of an arbitrary point along the beam's axis can be obtained by using the method of sections
- shear and moment functions must be determined for each region of the beam located between any two discontinuities of loading

a home base to excellence

Procedure for Analysis

- Determine the support reactions on the beam
- Specify separate coordinates x and associated origins
- Section the beam perpendicular to its axis at each distance x, draw free-body diagram
- V_{x} and M_{x} obtained from equilibrium equation
- The results can be checked by noting that $d M / d x=V$ and $d V / d x=q$, where q is positive when it acts upward, away from the beam

a home base to excellence

- Sign Convention

a home base to excellence

From equilibrium equation :
$\Sigma M_{A}=0, \Sigma M_{B}=0, \Sigma F_{y}=0$
Determine A_{v} and B_{v}

a home base to excellence

For region $A-B$:

$$
\begin{aligned}
& \Sigma F_{y}=0 \\
& +A_{v} \text { 回 } q \cdot x_{1}-V_{x 1}=0 \\
& V_{x 1}=A_{v} \text { 国 } q \cdot x_{1} \\
& \Sigma M_{x 1}=0 \\
& +A_{v} \cdot x_{1}-1 / 2 q \cdot x_{1}^{2}-M_{x 1}=0 \\
& M_{x 1}=A_{v} \cdot x_{1}-1 / 2 q \cdot x_{1}^{2}
\end{aligned}
$$

Check for $d M_{x 1} / d x_{1}$!

a home base to excellence

For region B-C :
$\Sigma F_{y}=0$
$+A_{v} q \cdot a-V_{x 2}=0$
$v_{x 2}=A_{v} q \cdot a$
$\Sigma M_{x 2}=0$
$+A_{v} \cdot x_{2}-q \cdot a\left(x_{2}-a / 2\right)-M_{x 2}=0$
$M_{x 2}=A_{v} \cdot x_{2}-q \cdot a\left(x_{2}-a / 2\right)$

a home base to excellence

For region C-D :

$$
\begin{aligned}
& \Sigma F_{y}=0 \\
& +A_{v} \text { Q } q \cdot a-P-V_{x 3}=0 \\
& V_{x 3}=A_{v} \text { Q } q \cdot a-P
\end{aligned}
$$

$$
\Sigma M_{x 3}=0
$$

$$
+A_{v} \cdot x_{3}-q \cdot a\left(x_{3}-a / 2\right)-P\left(x_{3}-b\right)-M_{x 3}=0
$$

$$
M_{x 3}=A_{v} \cdot x_{3}-q \cdot a\left(x_{3}-a / 2\right)-P\left(x_{3}-b\right)
$$

a home base to excellence

- If the variations of V and M as functions of x are plotted, the graphs are termed the shear force diagram (SFD) and bending moment diagram (BMD), respectively.

a home base to excellence

Example 2

- Derive the shear and moment function for the beams shown in the figure, then draw the SFD and BMD

For region A-C :

$$
\begin{aligned}
& \Sigma F_{y}=0 \rightarrow \quad V_{x 1}=A_{v} \\
& \Sigma M_{x 1}=0 \rightarrow M_{x 1}=A_{v} \cdot x_{1}
\end{aligned}
$$

For region C-B :

$$
\begin{aligned}
& \Sigma F_{y}=0 \rightarrow V_{x 2}=A_{v}-P \\
& \Sigma M_{x 2}=0 \rightarrow M_{x 2}=A_{v} \cdot x_{2}-P\left(x_{2}-L / 2\right)
\end{aligned}
$$

a home base to excellence

For region A-C:
$V_{x 1}=A_{v}$
For $x_{1}=0$
For $x_{1}=L / 2$
$V_{x 1}=+A_{v}=+P / 2$
$V_{x 1}=+A_{v}=+P / 2$
$M_{x 1}=A_{v} \cdot x_{1}$
For $x_{1}=0$
For $x_{1}=L / 2$

$$
M_{x 1}=0
$$

$$
M_{x 1}=P / 2(L / 2)=+P L / 4
$$

For region C-B :
$V_{x 2}=A_{v}-P$
For $x_{2}=L / 2$
For $x_{2}=L$

$$
V_{x 2}=-P / 2
$$

$$
V_{x 2}=-P / 2
$$

$M_{x 2}=A_{v} \cdot x_{2}-P\left(x_{2}-L / 2\right)$
For $x_{2}=L / 2$
$M_{x 2}=+P L / 4$
For $x_{2}=L$
$M_{x 2}=0$

a home base to excellence

Example 3

- Derive the shear and moment function for the beams shown in the figure, then draw the SFD and BMD for each beam

a home base to excellence

Example 4

- Draw the shear, normal and moment diagram for the beam in figure. $(\tan \alpha=3 / 4)$

a home base to excellence

Example 5

- Draw the shear and moment diagrams for each member of the frame. Assume the frame is pin connected at A, and C
$60 \mathrm{kN} / \mathrm{m}$

