

ATURAN PERKULIAHAN :

- Dispensasi keterlambatan 30 menit dari jam belajar.
- Absen dilakukan 15 menit setelah dosen masuk, kemudian jika ada mahasiswa yang terlambat harap lapor ke ketua kelas untuk dicatat kemudian dilaporkan ke dosen ybs.
- Absen diverivikasi 30 menit setelah mahasiswa hadir.
- BAGI MAHASISWA YANG TERLAMBAT MASUK PERKULIAHAN > 30 MENIT, diperkenankan masuk namun TIDAK DAPAT ABSEN karena sudah diverivikasi.
- Selama sesi perkuliahan, dilarang menyalakan nada dering Smartphone / Handphone, jika ada telepon masuk harap keluar kelas minta ijin dosen ybs. Jika ada yang mengangkat telepon di kelas akan ada PUNISHMENT.

TEXT BOOK

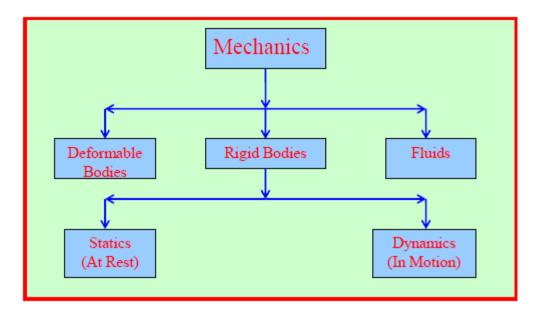
- Hibbeler, R.C. (2004). Statics and Mechanics of Materials SI Edition.
- Hibbeler, R.C. (2010). Structural Analysis. 8th edition. Prentice Hall. ISBN : 978-0-13-257053-4
- Meriam, J.L., Kraige, L.G., (2006), Engineering Mechanics Statics. 6th edition. John Wiley & Sons, Inc. ISBN : 978-0471739326
- Materi perkuliahan Prof Binsar, ITB
- Analisa Struktur, Agus Setiawan

SCORE

- Task : 30%
- UTS / Mid Semester : 30%
- UAS / Final Semester : 40%

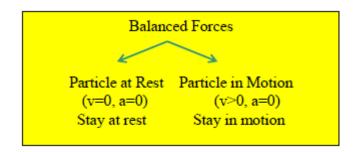
HUKUM NEWTON, VEKTOR

- TIU :
 - Mahasiswa dapat menjelaskan tentang prinsip keseimbangan, uraian, dan penjumlahan gaya.
- TIK :
 - Mahasiswa dapat menjelaskan konsep gaya


MECHANICS

- Mekanika adalah sebuah divisi dari Ilmu Pengetahuan yang mempelajari perilaku sebuah objek akibat beban yang bekerja tehadapnya.
- Mechanics is the branch of the physical sciences which deals with the state of rest or motion of bodies that are subjected to the action of forces.

SUBDIVISION OF MECHANICS



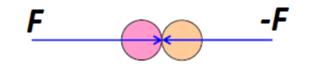
NEWTON'S THREE LAWS OF MOTION

First Law

"A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided the particle IS NOT subjected to an unbalanced external force"

SECOND LAW

"A particle acted upon by an unbalanced force (**F**) experiences an acceleration (**a**) that has the same direction as the force and a magnitude that is directly proportional to the force". If (**F**) is applied to a particle of mass (**m**), this law may be expressed mathematically as:


$\mathbf{F} = \mathbf{m} \mathbf{a}$

THIRD LAW

"The mutual forces of action and reaction between two particles are equal in magnitude, opposite in direction and collinear in orientation".

NEWTON'S LAW OF GRAVITATIONAL ATTRACTION

A law governing the gravitational attraction between any two particles is mathematically stated as:

 $F = G [m_1 \ge m_2 / r^2]$

Where :

- F = force of gravitation between the two particles
- G = A universal constant of gravitation; (66.73x10-12 m3/kg s2)
- m1 and m2 = mass of each of the two particles
- r = the distance between the two particles

WEIGHT

Weight is the gravitational force between the earth and the particle. If we assume that:

- W = weight of the particle
- m = ml = is the mass of the particle
- m2 = is the mass of the earth

r = is the distance between the earth's center and the particle

Then,

$$\mathbf{W} = \mathbf{G} \left[\mathbf{m}_1 \ge \mathbf{m}_2 / \mathbf{r}^2 \right]$$

Letting :

 $g = G \cdot m_2 / r^2$

Therefore, from the second law of motion (F = m . a) Where

g = acceleration due to gravity

UNIT OF MEASSURMENT

S1 UNITS

SI is known as the International System of Units where Length is in *meters* (m), time is in seconds (s), and mass is in *kilograms* (kg) and force is *in Newton* (N)

(1 Newton is the force required to give 1 kilogram of mass an acceleration of 1 m/s²).

CONVERSITON FACTORS

- Force; 1 lb = 4.4482 N
- Mass; slug = 14.5938 kg
- Length; ft = 0.304 m

- nano = η = 10⁻⁹ = 0.000 000 001
- micro = μ = 10⁻⁶ = 0.000 001
- milli = m = $10^{-3} = 0.001$
- kilo = k = $10^3 = 1,000$
- mega = $M = 10^6 = 1,000,000$
- giga = $G = 10^9 = 1,000,000,000$

FORCE VECTORS

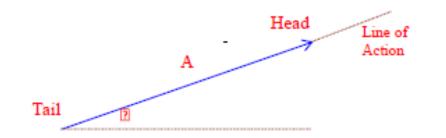
Scalars and Vectors

<u>Scalar</u>

- A quantity identified by positive or negative number.
- It is characterized by its magnitude only
- Elementary algebra is used when mathematical operations are involved
- Examples include mass, length, and volume

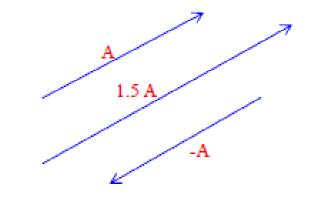
FORCE VECTORS

<u>Vectors</u>


- A quantity by its magnitude and direction
- Examples include force, moment, and displacement

GRAPHICAL REPRESENTATION OF A VECTOR

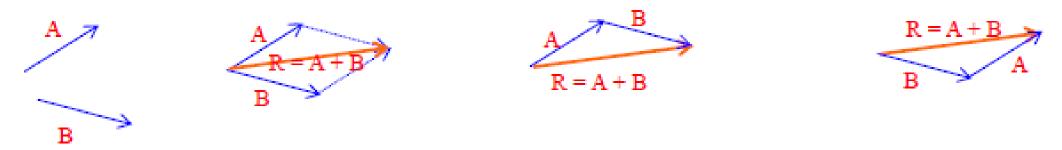
- Vectors are represented by ARROWS
- Magnitude is represented by the length of the arrow
- Direction is defined by
- Vector A is written as A ϕ



VECTOR OPERATIONS

Multiplication and Division of a Vector by a Scalar

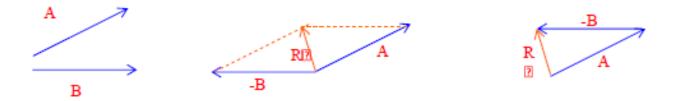
- Vector A
- Scalar a
- **A** a = a**A**
- Magnitude of aA
- Direction of **A** if *a* is positive (+)
- Direction of -A (opposite) if a is negative (-)



VECTOR ADDITION

- Vectors are added according to the parallelogram law
- The resultant R is the diagonal of the parallelogram

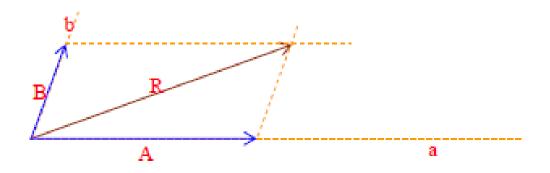
 If two vectors are co-linear (both have the same line of action), they are added algebraically


$$R = A + B$$

A B

VECTOR SUBTRACTION

• The resultant is the difference between vectors A and B

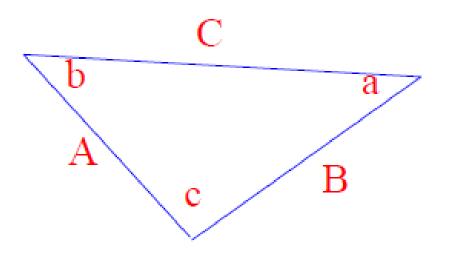


RESOLUTION OF A VECTOR

• If lines of action are known, the resultant **R** can be resolved into two components acting along those lines (i.e. a and b).

ANALYSIS OF PROBLEMS

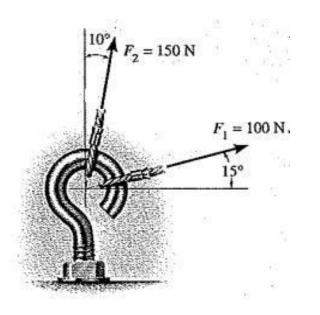
- Two procedures to be followed:
- Parallelogram law
- Trigonometry
- sine and/or cosine laws may be used

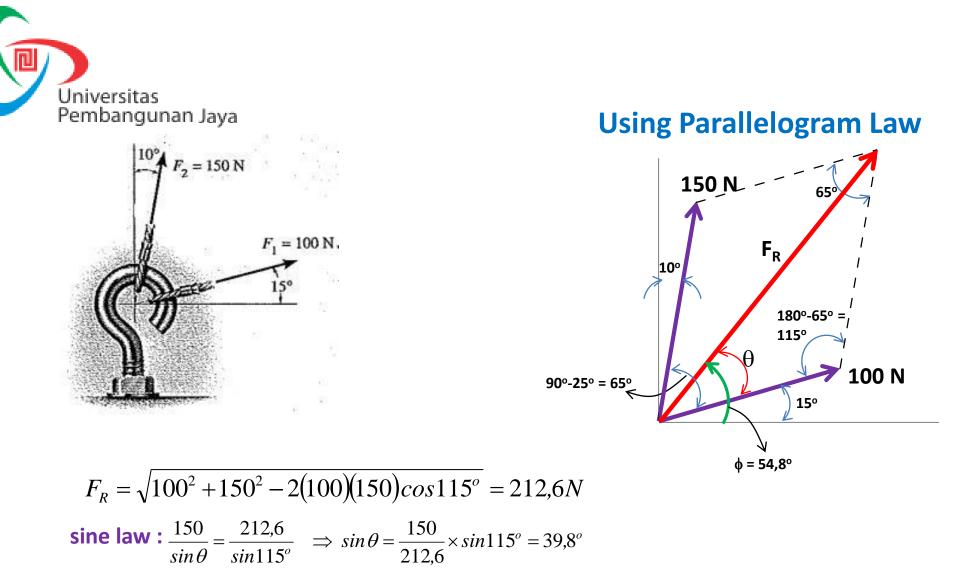


Sine Law

 $\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$

Cosine Law


$$\mathbf{C} = \sqrt{A^2 + B^2} - 2AB \cos c$$

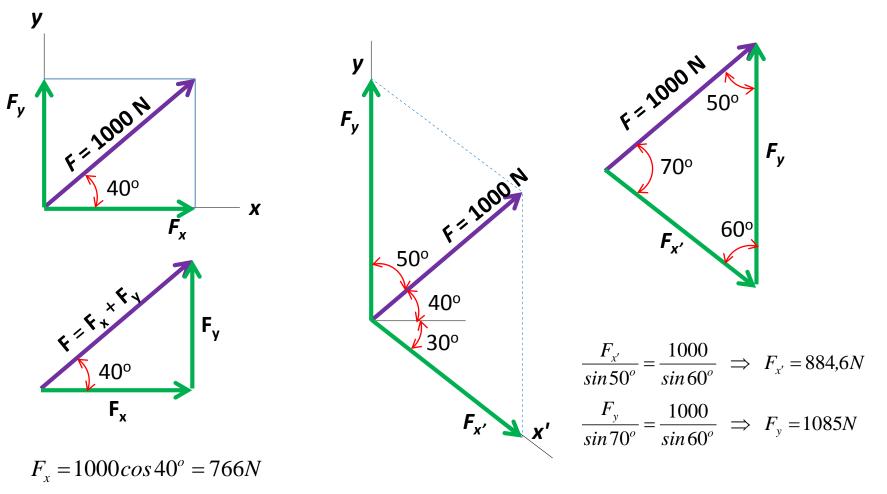


CASE 1 :

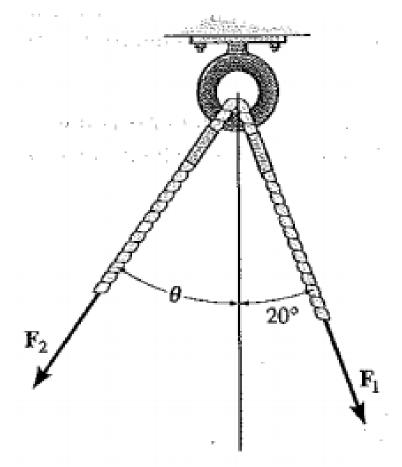
The screw eye in figure is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2 . Determine the magnitude and direction of the resultant force

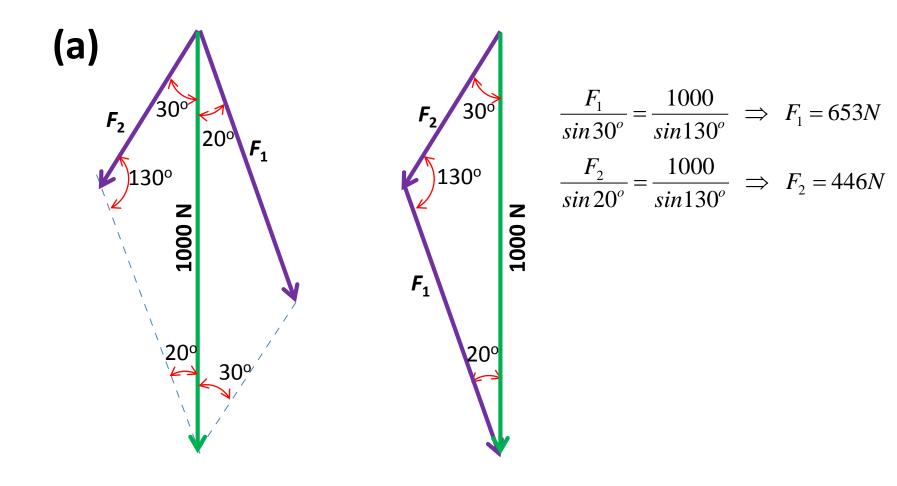
Direction, $\phi = 15 + \theta = 54,8^{\circ}$ from horizontal axis

CASE 2 :

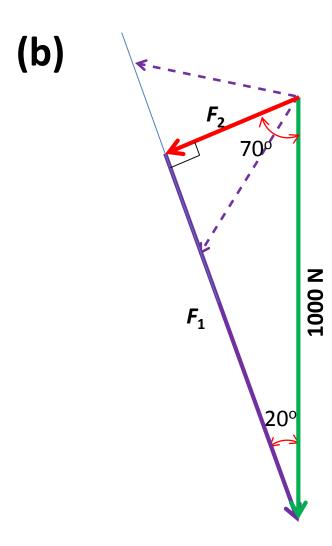

Resolve the 1000-N force acting on the pipe, into components in the : (a) x and y direction; (b) x' and y direction

 $F_{v} = 1000 \sin 40^{\circ} = 643N$




CASE 3 :

The ring show in figure is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2 . If it is required that the resultant force have a magnitude of 1 kN and be directed vertically downward, determine (a) the magnitudes of \mathbf{F}_1 and \mathbf{F}_2 provided $\Theta = 30^\circ$, (b) the magnitude of \mathbf{F}_1 and \mathbf{F}_2 if \mathbf{F}_2 is to be minimum



- If θ is not specified, then by the vector triangle,
 F₂ may be added to F₁ in various ways to yield the resultant 1000 N force.
- In particular, the minimum length or magnitude of F₂ will occur when its line of action is perpendicular to F₁.
- Hence, when $\theta = 90^{\circ} 20^{\circ} = 70^{\circ}$, **F**₂ is minimum

 $F_1 = 1000 \sin 70^\circ = 940N$

 $F_2 = 1000 \cos 70^\circ = 342N$

TAKE HOME WORK

- Make a group (1 group = at least 4 person, max 5 person)
- Do the task in Text Book (you can download in OCW)
 - Group 1, 3, & 5 : problems 2.1 2.19
 - Group 2, 4 & 6 : problems 2.20 2.38

DEADLINE NEXT WEEK **MONDAY / FEBRUARY 3RD 2020**

Note : do the task manually writting . 1 group 1 pack of task .

Good Luck !

